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Figure 1. Introducing EmbodMocap, a portable and low-cost system for simultaneous 4D human and scene reconstruction, deployable
anywhere using two moving iPhones. The dataset captured by EmbodMocap benefits three crucial embodied Al tasks: monocular human
& scene reconstruction, physics-based character animation, and real-world humanoid motion control.

Abstract

Human behaviors in the real world naturally encode
rich, long-term contextual information that can be lever-
aged to train embodied agents for perception, understand-
ing, and acting. However, existing capture systems typ-
ically rely on costly studio setups and wearable devices,
limiting the large-scale collection of scene-conditioned hu-
man motion data in the wild. To address this, we pro-
pose EmbodMocap, a portable and affordable data collec-
tion pipeline using two moving iPhones. Our key idea is to
Jjointly calibrate dual RGB-D sequences to reconstruct both
humans and scenes within a unified metric world coordinate
frame. The proposed method allows metric-scale and scene-
consistent capture in everyday environments without static
cameras or markers, bridging human motion and scene ge-
ometry seamlessly. Based on the collected data, we em-
power three embodied Al tasks: monocular human-scene-

reconstruction, where we fine-tune on feedforward models
that output metric-scale, world-space aligned humans and
scenes; physics-based character animation, where we prove
our data could be used to scale human-object interaction
skills and scene-aware motion tracking; and robot motion
control, where we train a humanoid robot via sim-to-real
RL to replicate human motions depicted in videos. Experi-
mental results validate the effectiveness of our pipeline and
its contributions towards advancing embodied Al research.

1. Introduction

Embodied Artificial Intelligence (Embodied AI) aims to
build agents that can perceive, understand, and act within
real-world environments. Progress in this field relies on
datasets that capture both human motion and the surround-
ing 3D scene, enabling physically grounded perception and
action learning. Such scene-aware data allows modeling



of realistic human—scene interactions, simulation of lifelike
behaviors, and training of humanoids to operate seamlessly
in complex environments. They serve as a foundation for
advancing embodied reasoning and control across robotics,
virtual reality, and computer vision.

However, collecting high-quality human—scene data re-
mains difficult. Precise 3D motion and scene geometry
cannot be automatically obtained from internet videos due
to occlusions and depth ambiguity. Existing capture sys-
tems that provide high-quality human-scene data typically
rely on multi-view camera rigs [11, 74], wearable motion
suits [22, 35], or LiIDAR scanners [6, 19], which are costly,
complex, and limited to controlled studio environments.
These constraints hinder scalable and scene-aware data ac-
quisition, limiting the ability of embodied AI models to
learn from natural human behavior in diverse indoor and
outdoor environments.

In this paper, we propose EmbodMocap, an efficient
and affordable framework for capturing metrically accurate
4D human and scene using only two iPhones. Our key
idea is to jointly calibrate and optimize dual RGB-D in-
puts to reconstruct both humans and scenes within a uni-
fied world coordinate frame. Specifically, we first recon-
struct the static scene from a single RGB-D sequence to de-
fine the world scale, then capture synchronized dual-view
RGB-D videos of human motion, and finally perform geo-
metric alignment and motion optimization to recover world-
anchored human poses. In contrast to existing systems that
rely on multi-camera rigs or wearable sensors, our approach
achieves high-quality, scene-consistent reconstruction us-
ing only moving consumer devices. This design enables
scalable, in-the-wild data collection that preserves precise
human motion and authentic scene context, supporting re-
alistic human—scene interaction modeling for embodied Al
research.

Based on the data collected with EmbodMocap, we
demonstrate the reliability and versatility of our capture
pipeline through three representative applications. The first
application verifies geometric consistency, where we fine-
tune reconstruction models to jointly recover humans and
scenes in world coordinates. The second validates physical
realism, showing that the captured motions enable scalable
training of physics-based character skills and scene-aware
motion tracking. The third demonstrates embodied trans-
ferability, where our data support humanoid robot training
through a sim-to-real motion tracking framework [26, 44].
These results highlight that EmbodMocap enables scalable
and physically grounded data acquisition for embodied Al.

In summary, our contributions can be summarized as fol-
lows:
¢ We introduce EmbodMocap, a portable and affordable

data collection pipeline that produces high-quality multi-
modal data for embodied Al applications.

* We validate our capture pipeline’s effectiveness across
three key embodied Al tasks: monocular human-scene
reconstruction, physics-based character animation, and
real-world humanoid motion control.

* We provide a scalable and accessible solution that low-
ers the barrier for embodied Al research, opening new
possibilities for real-world applications and further ad-
vancements in the field. All the codes and datasets will
be open-sourced.

2. Related Work

Datasets for 4D Human & Scene Capture. Early mo-
tion datasets, such as AMASS [10, 36], focus on pure hu-
man motion, unifying multiple motion capture sources into
a large-scale repository. While invaluable for studying hu-
man motion, these datasets lack the 3D scene context es-
sential for understanding human—scene interactions. Re-
cent 4D datasets, like PROX [11], RICH [19], and Ego-
Body [74], combine scanned 3D scenes with motion cap-
ture using multi-view camera systems, while EMDB [22]
and SPLOPER4D [6], employ IMUs or electromagnetic
sensors for motion recording in large-scale environments.
Nymeria [35] extends this further with Project Aria glasses
and optical marker-based systems for wide-area motion
capture. However, these approaches face notable limita-
tions: marker-based and multi-camera systems are expen-
sive and restricted to small studio environments, while IMU
and EM-based methods, though more flexible, require ex-
tensive manual alignment and post-processing to synchro-
nize motion with 3D scenes. And the wearable devices will
influence the human appearance in RGB images. In con-
trast, our approach uses minimal equipment, operates in di-
verse environments without static camera setups, and avoids
wearable devices, preserving the naturalness of RGB im-
ages for authentic human—scene interaction capture. Table |
compares these datasets.

Monocular Human & Scene Reconstruction. Early
works [4, 8, 21, 24, 42] on RGB-based human mesh re-
covery focus on reconstructing 3D pose and shape but of-
ten ignore scene context [60] or camera information [25,
63], leading to inconsistencies under camera motion. Re-
cent methods address this by combining motion cues [73],
SLAM or visual odometry [55, 65, 72], and human motion
priors [54, 73] to recover global trajectories in world coor-
dinates.

Emerging models move toward jointly reconstructing
humans and 3D scenes with spatial intelligence models [61,
62]. For example, HSFM [38] combines Dust3R [62]
with multi-view correspondence to jointly recover human
meshes, scene point clouds, and camera parameters from
multi-cameras. HAMSt3R [49] integrates DensePose [9]
and multi-view scene reconstruction in one model, with
an optimization to get human poses, while JOSH [29]



Table 1. Comparison of 4D Human & Scene datasets based on different features.

Datasets ‘ Publication . Devige . Outcome
Mocap Suit Scanner Static Cam. Dyna. Cam. Total Cost($) Mesh  Dyna.Anno.  Outdoor

PROX [11] ‘ ICCV2019 ‘ Structure Sensor Kinetic-One - 2K ‘ v X X
RICH [19] | CVPR 2022 | Leica RTC360 6-8x Cameras 1xCamera 20K+ | v v v
EgoBody [74] | ECCV2022 | 1xTPhone 5x Azure Kinect Hololens2 9K | v 4 X
SLOPER4D [6] | CVPR2023 |  Noitom PN+NUCI1 Ouster-os1 LiDAR DJI-Action2+TLS 20K | v v v
EMDB [22] | ICCV 2023 | EM Sensors 1xIPhone 15K | X v v
Nymeria [35] | ECCV2024 | 2xXSens+Aria Wistband 2xProject Aria 60K+ | X v v
EmbodMocap | - \ 1 xIPhone 2xIPhone IK | v v v

uses MASt3R-SLAM [39] and joint optimization to achieve
globally consistent 4D human-scene reconstructions. This
trend emphasizes the simultaneous prediction of human
motion and scene geometry, which futher requires multi-
model data pairs with high-quality annotations. In our pa-
per, we propose a monocular human & scene reconstruction
pipeline combined with 2 feedforward models, and fine-
tuned it on our proposed dataset to prove the efficiency of
our paired data.

Training Humanoid from Video Data. Recent advances
in physics-based animation and reinforcement learning en-
able humanoid agents to perform realistic and physically
consistent motions using control policies learned from
marker-based motion capture data. These methods have
shown strong realism in tasks like motion tracking [32, 44],
locomotion [33, 45, 46], and human—scene interaction [41,
64], and have been extended to real-world applications in
motion tracking [15, 17, 20], locomotion [16], and scene in-
teraction [3, 14]. However, marker-based methods require
dedicated studios, expensive hardware, and extensive man-
ual effort, making them costly and hard to scale. Adapt-
ing captured motions to new scenes or robot morphologies
also demands complex retargeting and re-simulation. To ad-
dress this, recent works like VideoMimic [2], ASAP [17],
and HDMI [67] train humanoid control directly from in-
the-wild video data. By using monocular motion capture
methods such as TRAM [65] and GVHMR [54], they es-
timate human motion from videos and retarget it to virtual
humanoids for training in physical simulators. This video-
driven paradigm leverages diverse real-world data but strug-
gles with capturing complex skills or scene geometries due
to occlusion and depth ambiguities. In this paper, we pro-
pose a method for high-precision human motion and scene
reconstruction that overcomes these limitations.

3. Proposed Capture System

We aim to capture metrically accurate human motion and
scene geometry using only two iPhones. As shown in Fig. 2,
our capture process consists of four sequential stages that
progressively reconstruct and align the scene, cameras, and
human motion within a unified world coordinate frame. We
first reconstruct a metrically accurate static scene and es-
tablish the world reference using a single iPhone RGB-

D sequence (Sec. 3.1). Then, we use two synchronized
iPhones to record dual-view RGB-D videos of human mo-
tion and extract per-frame camera poses and human priors
with off-the-shelf perception models (Sec. 3.2). Next, we
align the dual-view camera trajectories to the reconstructed
scene through a combination of COLMAP registration and
multi-view geometric optimization (Sec. 3.3). Finally, we
refine the SMPL parameters by triangulating dual-view 2D
keypoints into 3D space and optimizing human poses and
translations in the world coordinate system (Sec. 3.4).

3.1. Stage I: Scene Reconstruction

In this stage, we aim to reconstruct a metrically accurate,
Z-up scene mesh that serves as the reference world coor-
dinate system. We first use a single iPhone to capture an
RGB-D video of the scene, along with synchronized IMU
data. The recorded data are processed by the SpectacularAl
SDK (SAI) [1], which automatically selects keyframes ac-
cording to the accumulated camera translation and esti-
mates corresponding camera parameters (K, R, Ts.)
in Z-up world coordinates with metric scale. These tra-
jectories establish a consistent world frame for all subse-
quent stages. Based on the recovered poses, we refine the
iPhone LiDAR depth maps using PromptDA [27], unpro-
ject them into 3D space, and integrate the point clouds
through TSDF fusion [5] to obtain a dense and metrically
accurate global mesh M, . Note that the depth maps are
truncated based on a threshold determined by the effective
range of the iPhone’s depth sensor. Specifically, we use
a threshold of 3.5m for indoor scenes and 5m for outdoor
scenes. We further apply lightweight post-processing such
as outlier removal and small-component filtering to clean
the mesh. Finally, we extract SIFT features from the same
SAI keyframes and run COLMAP [51] with fixed cam-
era parameters to build a sparse structure database. This
database preserves the metric scale and serves as a refer-
ence for registering dual-view sequences in later stages.

3.2. Stage II: Sequence Processing

After reconstructing the static scene in Stage I, we proceed
to capture and process dual-view human motion sequences
within the same environment. In this stage, we use two
iPhones to record synchronized RGB-D videos of a per-
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Figure 2. EmbodMocap: We propose an affordable dataset capture and processing system. From left to right, the four stages (Stage-
I to Stage-IV) illustrate our core logic: leveraging high-quality camera matrices provided by SpectacularAl [1] and aligning sequence
coordinates to the scene’s world frame. For detailed explanations, please refer to Sec. 3.

former moving inside the reconstructed scene, with each
device providing an independent camera coordinate system.
The goal is to convert these raw dual-view videos into tem-
porally aligned and metrically consistent per-frame human
and camera information, which will serve as the foundation
for subsequent calibration and motion optimization.

Firstly, we use SAI to obtain per-frame calibrated
cameras for each view. Let v denote the view in-
dex (v € {v1,v2}), and let ¢ index time. For each
view independently, SAI provides intrinsics and extrinsics
(K,, R, 4, T, ) for every decoded frame I, ; in the native
coordinate system of that view. Next, we extract human-
related information using several off-the-shelf models: (i)
YOLO [56] for person detection and proposal pruning; (ii)
ViTPose [70] for 2D human keypoints with confidence
scores; (iii) SAM2 [48] for person segmentation masks;
(iv) PromptDA [27] to refine dual-view depths; and (v)
VIMO [65] for camera space SMPL parameters. Finally,
we employ a laser pointer cue for frame-level synchroniza-
tion between the two camera streams. By identifying the
frame index where the laser dot disappears, we temporally
align both videos and slice all associated image, depth, and
parameter data accordingly. This process yields synchro-
nized dual-view RGB-D sequences with calibrated camera
trajectories and per-frame human priors, providing clean in-
puts for subsequent sequence calibration.

3.3. Stage III: Sequence Calibration

After obtaining the static scene reconstruction in Stage 3.1
and the dual-view camera trajectories in Stage 3.2, the next
step is to align all coordinate systems into a unified world
frame. At this point, we have three separate coordinate
systems: one for the reconstructed scene and two for each
iPhone camera trajectory estimated by SAI. Since the dual-

view coordinate systems differ from the scene coordinate
system only by rigid transformations, our goal is to optimize
these 2 rigid transformations to unify the dual-view coor-
dinates into the same metric, gravity-aligned world frame.
The optimization process is sensitive to the initial values;
therefore, it is necessary to first obtain a good initial esti-
mate for the rigid transformations.

Get Initial Transformation from COLMAP. We register
each dual-view sequence to the sparse COLMAP model
constructed in Stage 3.1 using the known intrinsics K,
and background-only SIFT features F,, extracted from im-
ages with human regions removed. Matches are estab-
lished through a trained vocabulary tree [52], and images
are registered against the sparse COLMAP model to obtain
COLMAP camera poses (RU 0T, ) in the same metric,
gravity-aligned world coordinates as the scene.

To obtain the initial rigid transformation aligning the
SAI camera trajectories T'v, ¢ with their COLMAP coun-
terparts Tv, t, we solve for an offset transformation
(s°f, RO T°%) by minimizing:

N
min E HTt —
soff | Roff Troff —

where N is the number of frames. After centering the tra-
jectories, we solve this minimization problem using singu-
lar value decomposition (SVD).

For gravity alignment, R°f is constrained to rotations about
the z-axis, ensuring proper alignment of SAI trajectories
with the COLMAP coordinate system.

Calibration via Multiple Constraints. While the rigid
transformations obtained in the previous step provide coarse
alignment between the two camera trajectories and the re-
constructed scene, this initialization alone is not sufficient
to achieve accurate synchronization and metric consistency.

(SOHROHE_'_TOH)HE’ (1)



To further refine the calibration, we jointly optimize all
alignment parameters by introducing multiple geometric
and photometric constraints across views. Specifically, we
optimize the per-view global offsets Rgﬁ (constrained to z-
axis rotations) and 7°f, using the initial alignment as the
starting value. The aligned camera extrinsics are:

R}, =R'Ryy, T)=R'T,, +T)". ()

The optimization minimizes a composite loss of point

tracking loss, Chamfer distance, and bundle adjustment loss

to ensure spatial consistency between views and the global
reconstruction.

ﬁcalib = AtracloCtrack + Z AclldChamfer + Z )\ba‘cba,v-
v v

Through VGGT tracking, a subset of keyframes is selectg:?i),
yielding accurate dual-view pixel tracking results in the hu-
man masks region. The tracked human surface 2D pixel co-
ordinates q(f)

o)

vt

».¢» along with their corresponding depth values

are back-projected into the world frame:
. . _ (4) -
Q) = )R K, [qﬂ + R, @

To enforce track consistency between views, the follow-
ing loss is minimized:

1 _ (i i i
Lirack = m ;;wg )HQ(l,)t - Qé,%“;’ )

Where Qﬁ and Qgi are the 3D back-projected coordi-
nates of the i-th point from view 1 and view 2, respectively.
~ (1)

The weights w,; ’ are used to control the contribution of

each point based on its tracking confidence. Here wﬁ“ =

min(wgfi, wgl) combines the VGGT confidence scores for
the same poiht across views. The Chamfer distance term
dchamfer aligns local pointclouds P, (v € {v1,va}) with
the global reconstruction P sampled from M, in Sec. 3.1,
where P, is obtained by reconstructing the scene using the
method from Sec. 3.1 with humans cropped by masks. The
Chamfer distance is formally defined as:

1
dChamfer(va’Pg) = W Z

PvEPy
TR in | I3
min |[Pg — Pol|a-

|Pg| pgepg P.EPy

: . 2
iy lpo — pgll3

(6)

Finally, Lpa, (v € {v1,v2}) ensures reprojection con-

sistency for persistent matches, where the points are ob-
tained from COLMAP image registration:

1 . .
Loaw = > oy —m(Ko, R, T, X))
(t,g)EM,
)

| M, |
We solve Eq. (3) using the Adam [23] optimizer with
gradient clipping. For yaw-only updates, RS is parameter-
ized by a single z-axis angle to preserve gravity alignment.

3.4. Stage IV: Motion Optimization

After obtaining calibrated dual-view trajectories and a uni-
fied scene coordinate system in Stage 3.3, we further re-
fine the human reconstruction results to achieve accurate
and temporally consistent body motions in the world frame.
At this stage, both camera poses and scene geometry are
fixed, allowing us to focus on optimizing the human pa-
rameters. We first triangulate dual-view 2D keypoints into
world-space 3D keypoints, which serve as reliable geomet-
ric constraints across views. Then, we optimize the SMPL
parameters using these triangulated 3D keypoints to recover
precise body poses and translations under the unified world
coordinate system.

3D Keypoint Triangulation. To triangulate the 3D key-
points Y; ; from their 2D projections {y, ¢ ;}, we estimate
the 3D position by minimizing the weighted reprojection

error across all views:
1%
. 2
min Y ¢yt 5l|yors — PoYigll; (8)

Y .
b y=1

where P, = K,[R,; | T,,] is the camera projection
matrix for the v-th view. The problem can be formulated
as a weighted least squares optimization. Using SVD, Y ;
is obtained as the right singular vector corresponding to the
smallest singular value of A.
World-Space SMPLify. Start from initial shape 3y and
body pose 9? % in Sec. 3.2, our World Frame SMPLify [30]
jointly optimizes shape 3 € R, per-frame pose 6; =
{6%,6>} € R™ and root translation v, € R? by minimiz-
ing:

['SMPLify = L:SD + L:smooth + ['prior + Creproj (9)

We use a two-stage optimization phase to ensure the
smoothness and alignment with the original dual views,
which will be detailed in Supp.Mat.

4. Evaluation

4.1. Ablation Study on Loss Functions

Ablation on dataset optimization. We conduct an ablation
study on four core loss functions that significantly influence
performance during data optimization, as described in main
paper. These loss functions include tracking loss, Chamfer
distance, reprojection loss, smoothness loss and kp3d loss.
To evaluate the performance under different optimization
settings, we employ four metrics. First, IoU(Intersection
over Union) measures the overlap between the rendered
SMPL mask and the SAM2 [48] mask. Second, Reproj
evaluates the pixel error between the reprojected SMPL
joints and the 2D keypoints detected by VITPose [70].
Third, Depth error is computed as the mean squared error
(MSE) between the rendered depth from SMPL parameters
and the sensor depths refined by PromptDA [27]. Finally,



Jitter is quantified using the same temporal foot skating
metric as MotionVAE [28]. All metrics are averaged across
all sequences and views to ensure a robust evaluation.

The Lirqcr effectively stitches the two views together,
significantly improving the overall reconstruction perfor-
mance, making it highly impactful on the final results. The
Lp3q provides 3D joint positions of the human body, and
compared to the reprojection loss, it eliminates the issue of
depth ambiguity, thus playing a critical role in the overall
performance.

Table 2. The performance of different optimization settings.

Lirack  Lenamfer Lreproj  Lsmooth  Lkpsa 1oU(%)T  Reprojl  Depth]  Jitter]

X v v v v 543 44.2 2372 0.0371
v X v v v 725 10.9 0.081 0.0131
v v X v v 72.3 1.1 0.079 0.0130
v v v X v 72.1 104 0.087 0.0160
v v v v X 59.3 20.4 0.609 0.0126
v v v 4 4 73.0 9.3 0.078 0.0128

4.2. Comparison with Optical Mocap

Direct comparison in optical mocap studio. To evalu-
ate the accuracy of dual view capture system, we set up
furniture in a mocap studio and use a Vicon system to cap-
ture ground truth human motion. Two photographers record
dual-view videos of the actor with iPhones, while the actor
performs basic motions(see Fig. 8, zoom in). We record 5
sequences of one participant with 9420 frames in total. We
compare the errors against optical mocap GT of: monoc-
ular model GVHMR, our dual-view optimization, and our
single-view version(vl and v2). For the single-view ver-
sion, we calibrate the actor coordinates to the scene coor-
dinates system using COLMAP and optimize the motion
with reprojection, smooth, and prior losses. The optical mo-
cap results are fitted to SMPLX parameters by Mosh [31]
and synchronized to dual-view parameters with foot contact
keyframs. Results are compared in chunk sizes of 100, 500,
and 1000. Our dual-view method outperforms the monoc-
ular model and single-view optimization by a large margin.
As the chunk length increases, our advantage becomes in-
creasingly evident. (see Tab. 8)

(¢) Optimized view!

(¢) Optimized dual-view (¢) Optimized view2

Figure 3. Optimized results in optical studio.

The advantage of dual-view over single-view lies in two
key aspects: 1)dual-view effectively addresses occlusion

Table 3. Comparision among monocular model, single view opti-
mization, with dual view optimization(ours)

chunk=100 chunk=500 chunk=1000

Method WA-MPIPE| _ W-MPJPE] | WA-MPJPE] _ W-MPIPE| | WA-MPIPE| _ W-MPIPE|

RTE|

GVHMR 66.56 123.44 124.61 333.34 179.47 593.79 1.85
Single-View V1 124.68 218.22 233.06 489.11 297.83 768.31 2.71
Single-View V2 108.31 211.83 231.41 357.22 338.42 762.80 3.65

Dual View 56.61 72.86 76.90 99.75 119.45 169.11 113

and self-occlusion of body joints, 2)it handles the challeng-
ing alignment of actor motion coordinates to the scene co-
ordinates. The COLMAP estimates the camera locations
for the images but suffers from depth ambiguity in the
camera’s facing direction. Using a single iPhone results
in large errors in the depth direction. In contrast, using
two iPhones enables pixel-wise dense correspondence(see
Eq. (5)), which ensures the rigid transformation between the
two cameras during the optimization, and resolves the depth
ambiguity in each view. This enables a good localization
of human trajectories in the scene coordinate system au-
tomatically. Our dual view could achieve a calibration ac-
curacy to the scene of about Scm (human touching table in
the figure), while the single view is over 30cm, measured in
MeshLab by putting markers on the ground for the actor’s
start and end positions.

5. Downstream Applications

In this section, we validate our capture pipeline’s effective-
ness across three key applications. In Sec. 5.1, we propose
a monocular human & scene reconstruction pipeline and
finetune it with our captured RGBD, cameras, and SMPL
annotations. In Sec. 5.2, we train several human-object in-
teraction skills and scene-aware motion tracking with our
captured motion & scene. In Sec. 5.3, we train a humanoid
in simulator and deploy it to real-world robot.

5.1. Monocular Human & Scene Reconstruction

Motivation. We propose a data scheme combining RGBD
data from dynamic cameras with camera and human motion
parameters to train monocular human and scene reconstruc-
tion models. As no feedforward model exists, we establish a
baseline using 73[66] for SLAM and VIMO[65] for metric-
scale human motion reconstruction from monocular videos.
Implementation. To process long sequences, videos are
divided into overlapping chunks, with 73 estimating cam-
era parameters and local point maps per chunk. Adja-
cent chunks are aligned using Procrustes alignment, and
scale/transformations are recursively applied for global con-
sistency. Metric scale is determined as the median ratio
of SMPL to 72 depth values. SMPL predictions are then
transformed to metric world space. For details, refer to
Supp. Mat. We fine-tuned two 73 variants Tab. 4 by adding
LoRA [18] layers to the camera and point decoders, super-
vised with the original w3 loss. For VIMO, we froze the
encoder and finetuned the decoder with MSE loss on SMPL



parameters. A human mask was used to limit supervision to
the human region due to our dataset’s smaller range.
Metrics. We evaluate motion and trajectory accuracy on
global coordinates using EMDB (subset 2)[22], featur-
ing extended sequences with ground-truth trajectories and
meshes. Consistent with prior work[55, 65], each sequence
is split into 100-frame chunks, and 3D joint errors are mea-
sured using W-MPJPE (aligning the first two frames) and
WA-MPIJPE (aligning the entire segment), both in millime-
ters. Additionally, Root Translation Error (RTE) is reported
as a percentage (%), normalized by total displacement after
rigid alignment (excluding scaling).

Results. We present 3 variants in Tab. 4: the proposed
baseline with the original checkpoints from 73 [66] and
VIMO [65], fine-tuning only VIMO, and fine-tuning both
7% and VIMO. The results demonstrate that our approach
significantly improves the accuracy of VIMO, as we provide
paired high-quality real-world RGB sequences and ground
truth SMPL parameters. Additionally, leveraging our high-
quality RGB-D data and camera parameter pairs, 7>’s abil-
ity to predict in the world coordinate system also shows im-
provement. Our pipeline shows good performance on large-
scale real-world videos, see Fig. 4

Table 4. Comparison of Finetuned Models on EMDB Benchmarks

Finetuned EMDB
Pi3 VIMO | WA-MPJPE| W-MPJPE| RTE|
X X 83.56 229.04 1.78
X v 82.89 22293 1.73
v v 82.21 220.65 1.71

Figure 4. Quality results of proposed 4D Human & Scene Recon-
struction pipeline on EMDB dataset.

5.2. Physics-based Character Animation

5.2.1. Human Object Interaction Skill Training

Motivation. We train several human-object interaction
skills to demonstrate the physical realism of our approach
and the scalability of our capture framework to new interac-
tion skills. We aim to prove the efficiency and quality supe-
riority of our framework over optical capture and monocular
estimation methods.

Implementation. Following [41, 45, 64], we train phys-
ical character policies use goal-conditioned reinforcement
learning to formulate character control as a Markov Deci-
sion Process (MDP) defined by states, actions, transition dy-
namics, a reward function r, and a discount factor . The re-
ward r; € R is calculated by a style reward 7} tvle 45] and a
task reward 7{%**. The policies are trained to maximize the
expected discounted return: J(7) = Ep, (7| {ZtT;Ol Wtrt} ,
where T is the episode length, v € [0, 1] is the discount
factor, and r; is the reward at time step {. We use the
widely adopted Proximal Policy Optimization (PPO) algo-
rithm [53] to train the control policy model.

Following [13, 41, 64], we train a set of human object
interaction skills in simulator [37], including follow, climb,
sit, and lie. These common interaction skills are designed
to guide the character’s root joint to reach specific target
positions in 3D environments while maintaining physically
realistic and motion divisty. We train these four common
skills on 3 different input data: optical captured, which
are collected from AMASS [36] and SAMP [12] follow-
ing TokenHSI [41]; ours, by segmenting the reconstructed
motions into skill clips; monocular, by using the motion
predicted by GVHMR [54] which is commonly used in
humanoid reference motion prediction[17, 67], segmented
with the same temporal slices as ours. We also train 2 extra
interaction skills which have not been implemented in pre-
vious physics-based human object interaction papers: Prone
and Support. We will illustrate the observation, reward de-
signs, and the training details of each skill in Supp.Mat.
Metrics. We follow [12, 68] that uses Success Rate and
Contact Error as the main metrics to measure the quality
of interactions quantitatively. Success Rate records the per-
centage of trials that humanoids successfully complete the
contact within a certain threshold. We follow [13, 40, 68] in
setting the thresholds for various actions: 20cm for Sit, Fol-
low, and Climb; 30cm for Lie and Prone; and 10cm for Sup-
port. For Support, the error is defined as the distance from
the object surface center to the hand center, while also tak-
ing into account the distance between the two feet. Please
see details in Supp.Mat. We evaluate motion diversity using
Average Pairwise Distance (APD) [7], which measures the
average pairwise distance between joint rotations and po-
sitions in generated samples. Higher APD values indicate
greater diversity.

Results. We can find in Tab. 5, for skills such as Follow,
Climb, and Sit, the inherent difficulty is relatively low, and
all three data settings achieve good results, very close to
100%. Although the quality of our data is slightly inferior
to optically captured data, we provide more variety of task
completion trajectories and motion diversities, which con-
tribute to improve task performance. To prove this, we ab-
late on skills trained with different data proportions. 1X and
2X indicate the ratio of the number of clips relative to the



Table 5. Comparison of data duration, Success Rate, Contact Er-
ror, and APD for different skills among 3 data settings.

Task ‘ Data ‘ Clips ‘ Duration (min) ‘ Rate (%) T ‘ Error (cm) | ‘ APD 1
Optical Mocap 12 1.59 99.9 6.0 20.17 £ 0.19
Ours 1X 12 1.48 99.9 6.7 18.42 +0.22
Follo Ours 2X 24 3.06 99.7 638 18.45 +0.17
orow Ours Full 148 2243 99.8 6.2 19.69 + 0.32
Monocular 148 2243 98.0 7.2 19.85 + 0.39
Optical Mocap 7 0.28 99.9 27 22.03 + 030
Ours 1X 7 0.54 99.8 18 2277 +0.29
Climb Ours 2X 14 0.97 99.9 1.8 20.72 + 030
Ours Full 21 1.54 99.9 1.8 2224027
Monocular 21 1.54 9.2 18 2034 +038
Optical Mocap | 20 4.08 98.0 55 16.07 + 0.39
Ours 1X 20 211 99.8 54 14.35 4+ 0.27
Sit Ours 2X 40 447 99.9 5.1 14.46 +0.24
Ours Full 80 8.05 99.9 47 15.90 + 0.51
Monocular 80 8.05 98.4 5.7 15.80 + 0.51
Optical Mocap 10 252 89.0 175 8.76 + 0.14
Ours 1X 10 0.99 85.3 202 743 +0.10
L Ours 2X 20 232 86.3 19.8 8.27 4 0.06
e Ours Full 39 425 89.4 18.8 8.57 £ 0.10
Monocular 39 425 81.2 21.0 8.14£0.10
Pron Ours Full 3 0.26 75.4 16.5 17.58 + 0.69
one Monocular 3 0.26 712 16.5 16.18 % 0.30
Suport Ours Full 8 0.97 66.0 4.9 21.08 + 0.59
PP Monocular 8 0.97 20.6 6.4 20.94 + 048
g
& /
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(a) Qualitative comparison on 4 basic skills.

Monocular

Ours

Pror/|e Support
(b) Qualitative comparison on 2 additional skills.

optical capture data. On the 4 common skills, we observe
a general trend where increased data amount leads to im-
provements in success rate, contact error, and APD metrics.

Our new implemented 2 extra skills, Prone and Support,
demonstrate the versatility of our data collection pipeline.
First, these new skills highlight the ability of our approach
to generalize to novel interaction tasks. Second, the Support
skill significantly increases the level of difficulty. Unlike
other tasks, where a humanoid only needs to walk or offload
the full body weight onto furniture surface, Support requires
the hands to bear the weight of the body while the feet re-
main close together, demanding much higher accuracy in
reference motion generation. This experiment shows that
our approach outperforms monocular estimation methods
by a large margin, particularly for high-difficulty interac-
tion skills. The success rate trained on monocular estimated

Table 6. Quantitative evaluation of scene-aware motion tracking
and dataset statistics across four 3D scenes.

Scene‘ Clips ‘Duralion (min)‘ Status ‘ Rate (%) ‘ Eps. Len. (s)
D - A e
N e
e [ w e
IR

motions degrades to only 20% in Tab. 5. In Fig. 5b, we
can see policy trained on motion estimated from monocular
models could not perform standard Support skill.

5.2.2. Scene-aware Motion Tracking

Motivation. Recent works [33, 34, 46, 57-59, 71] suggest
that solving complex tasks requires pre-training on large-
scale human motion data via motion tracking objectives, in
order to obtain reusable and generalizable skill priors. How-
ever, existing motion tracking frameworks are mainly built
for human-only [32] or single-object interaction [69] sce-
narios, primarily because current public datasets are con-
centrated in these settings. We argue that motion tracking
pre-training on diverse 3D scenes is equally important, as
it also provides rich priors—such as navigation, interaction,
and long-horizon task execution. In this work, we mitigate
this gap by: 1) proposing a scene-aware motion tracking
framework, and 2) supporting it with high-fidelity paired
3D human-scene data captured by our EmbodMocap sys-
tem.

Implementation. We extend MimicKit [43] by incorpo-
rating the height map into the observation space to achieve
scene-aware tracking (details in the Supp. Mat.). For train-
ing, we use four 3D scenes, each containing several minutes
of motion clips, and train one policy per scene to track all
the motion clips in that scene.

Metrics. Policies are evaluated using a success rate met-
ric: an episode is initialized from a random frame and run
for 10s, and is considered successful if tracking exceeds 8s.
For each scene, 3,072 episodes are used to compute average
success, failure rates, and episode length statistics.
Results. The quantitative results in Tab. 6 demonstrate that
our data is simulation-ready, enabling the training of scene-
aware tracking policies with high success rates. The quali-
tative results, shown in Fig. 6, further illustrate that the poli-
cies not only successfully track the motions but also adapt
to subtle imperfections present in the data.

5.3. Real-world Humanoid Robot Control

Motivation. Learning from human videos [2, 47, 67] has
emerged as a crucial paradigm for humanoid robots to learn
motor skills at scale. In this section, we demonstrate how
EmbodMocap contributes to this paradigm by enabling ac-
curate reconstruction of humans and their interacting 3D en-
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Figure 6. We prese(n)t qualitative results of scene-aware motion tracking, showing four lgril)g term motion examples in different scenes (a,
b, ¢, and d), including daily indoor and outdoor interactions such as walking, sitting, lying, stair climbing, and touching. Our motion
tracking framework not only accurately tracks the reference motion but also ensures physical realism, resolving subtle issues, such as
interpenetration and floating artifacts, present in the reference data (see zoomed-in views on the right).

vironments from videos, while preserving accurate contact
information.

Implementation. We capture videos of humans perform-
ing ground-contact-rich motions, including locomotion and
challenging cartwheels that require precise hand-ground
contact. EmbodMocap is then used for real-to-sim recon-
struction. The produced motions are used to train a single
tracking policy via sim-to-real RL with domain randomiza-
tion using BeyondMimic [26].

Results. We deploy the policy on a real-world High Torque
Hi humanoid robot with 21 joint DoF and a height of 80cm.
As shown in Fig. 7, the robot successfully replicates hu-
man motions from videos, demonstrating that EmbodMo-
cap produces data of sufficient quality for humanoid robot
control.

5.4. Ablation Study on Loss Functions

Ablation on dataset optimization. We conduct an ablation
study on four core loss functions that significantly influence
performance during data optimization, as described in main
paper. These loss functions include tracking loss, Chamfer
distance, reprojection loss, smoothness loss and kp3d loss.
To evaluate the performance under different optimization
settings, we employ four metrics. First, IoU(Intersection
over Union) measures the overlap between the rendered
SMPL mask and the SAM?2 [48] mask. Second, Reproj
evaluates the pixel error between the reprojected SMPL
joints and the 2D keypoints detected by VITPose [70].
Third, Depth error is computed as the mean squared error
(MSE) between the rendered depth from SMPL parameters
and the sensor depths refined by PromptDA [27]. Finally,

Figure 7. A real-world humanoid robot imitating human motions
depicted in videos.

Jitter is quantified using the same temporal foot skating
metric as MotionVAE [28]. All metrics are averaged across
all sequences and views to ensure a robust evaluation.

The Lirqcr effectively stitches the two views together,
significantly improving the overall reconstruction perfor-
mance, making it highly impactful on the final results. The
Lip3q provides 3D joint positions of the human body, and
compared to the reprojection loss, it eliminates the issue of
depth ambiguity, thus playing a critical role in the overall
performance.



Table 7. The performance of different optimization settings.

Lirack  Lehamfer Lreproj Lsmooth  Likpaa  10U(%)T  Reprojl  Depth]  Jitter]

X v v v v 543 442 2372 00371
v X v v v 725 109 0081 00131
v v I3 v v 723 111 0079 00130
v v v 3 v 72.1 104 0087  0.0160
v v v v X 59.3 204 0609  0.0126
v v v v v 73.0 9.3 0.078 00128

5.5. Comparison with Optical Mocap

Direct comparison in optical mocap studio. To evalu-
ate the accuracy of dual view capture system, we set up
furniture in a mocap studio and use a Vicon system to cap-
ture ground truth human motion. Two photographers record
dual-view videos of the actor with iPhones, while the actor
performs basic motions(see Fig. 8, zoom in). We record 5
sequences of one participant with 9420 frames in total. We
compare the errors against optical mocap GT of: monoc-
ular model GVHMR, our dual-view optimization, and our
single-view version(vl and v2). For the single-view ver-
sion, we calibrate the actor coordinates to the scene coor-
dinates system using COLMAP and optimize the motion
with reprojection, smooth, and prior losses. The optical mo-
cap results are fitted to SMPLX parameters by Mosh [31]
and synchronized to dual-view parameters with foot contact
keyframs. Results are compared in chunk sizes of 100, 500,
and 1000. Our dual-view method outperforms the monoc-
ular model and single-view optimization by a large margin.
As the chunk length increases, our advantage becomes in-
creasingly evident. (see Tab. 8)

(¢) Optimized view!

(¢) Optimized dual-view (c) Optimized view2

Figure 8. Optimized results in optical studio.

Table 8. Comparision among monocular model, single view opti-
mization, with dual view optimization(ours)

Method chunk=100 chunk=500 chunk=1000 RTE,
WA-MPJPE| W-MPJPE| | WA-MPJPE| W-MPJPE| | WA-MPJPE| W-MPJPE|

GVHMR 66.56 123.44 124.61 333.34 179.47 593.79 1.85
Single-View V1 124.68 218.22 233.06 489.11 297.83 768.31 2.71
Single-View V2 108.31 211.83 231.41 357.22 338.42 762.80 3.65

Dual View 56.61 72.86 76.90 99.75 119.45 169.11 113

The advantage of dual-view over single-view lies in two
key aspects: 1)dual-view effectively addresses occlusion
and self-occlusion of body joints, 2)it handles the challeng-
ing alignment of actor motion coordinates to the scene co-
ordinates. The COLMAP estimates the camera locations
for the images but suffers from depth ambiguity in the

camera’s facing direction. Using a single iPhone results
in large errors in the depth direction. In contrast, using
two iPhones enables pixel-wise dense correspondence(see
Eq. (5)), which ensures the rigid transformation between the
two cameras during the optimization, and resolves the depth
ambiguity in each view. This enables a good localization
of human trajectories in the scene coordinate system au-
tomatically. Our dual view could achieve a calibration ac-
curacy to the scene of about Scm (human touching table in
the figure), while the single view is over 30cm, measured in
MeshLab by putting markers on the ground for the actor’s
start and end positions.

6. Conclusion

We propose EmbodMocap, a portable and affordable frame-
work for capturing high-quality 4D human & scene data us-
ing only two iPhones. Our method enables scalable, metri-
cally accurate reconstruction of human motion and scenes
mesh in diverse real-world environments. Through appli-
cations in monocular human-scene reconstruction, physics-
based character animation, and humanoid robot motion con-
trol, we demonstrate the effectiveness and scalability of
our approach. By lowering the barrier for embodied Al
research, EmbodMocap opens new opportunities for real-
world applications. We will discuss the limitations in
Supp.Mat.

7. Limitations and Future Work.

Our data collection pipeline encounters limitations in spe-
cific scenarios. For example, it fails to record depth when
the distance exceeds the range of the iPhone LiDAR sensor
(approximately 5 meters). Additionally, it struggles with
scenes dominated by moving objects, which degrade the
results of the SLAM SDK [1]. Extremely bright lighting
conditions can also cause COLMAP failures, leading to in-
correct registration. Future work could integrate more ro-
bust structure-from-motion tools, such as H-Loc [50], to
improve reliability. Moreover, incorporating automatic syn-
chronization APPs on iPhone could further reduce human
effort.
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8. Human Labor Analysis

Temporal Synchronization. This step only needs the oper-
ator to identify and input the frame indices where the laser
pointer’s spot disappears into a . x1sx file. Typically, this
process takes only about 1 minute per sequence.

Skill Segmentation. Skill segmentation is only required
when training physical interaction skills. The operator an-
notates each skill’s category, start, and end times based on
the video, typically taking 0.5 to 2 minutes per sequence.

Contact Label & Optimization. In the main text, we
mention that the alignment between our sequence and the
scene coordinate system relies on photometric (COLMAP,
pixel tracking) and geometric constraints (chamfer dis-
tance). However, this can sometimes result in alignment
errors of a few centimeters, primarily due to depth inac-
curacies in COLMAP’s sparse keypoints and depth errors
from the iPhone sensor. To address this issue, we propose
an optional post-processing solution. During data capture,
we place markers in the scene and instruct the performer
to begin walking from a designated marker and stop on an-
other at the end of the sequence, standing still on the same
marker. Annotating contact frame indices costs 1-2 minutes
for each sequence. These markers serve as fixed reference
points for alignment. In post-processing, we observe the
corresponding marker positions on the reconstructed mesh
and record their 3D coordinates, along with the frame in-
dices where the performer stands on the markers. Using this
information, we optimize a rigid transformation to align the
center of the performer’s feet at the specified frame indices
to the 3D coordinates of the markers.

Since SAI [1] could generate Z-up metric-scaled cam-
era matrices, we define the rigid transformation in the xy-
plane, defined by a rotation angle ¢. about the z-axis and a
translation 7. This can be represented by a homogeneous
transformation matrix M::

COS(¢C) - Sin((bc) 0 t,
M: |:R(¢c) Tc:| — Sin((bc) COS(¢C) O )
0 1 0 0 1 ¢,
0 0 0 1
(10)

This matrix transform the center of lowest point on both
feet to match the annotate marker. To robustly solve for the
transformation parameters, we employ a gradient descent
optimization, constrained by a minimizing a contact loss to

@ g METaRkO @O XXX

Figure 9. An example in finding the contact marker in software
(e.g., Meshlab) and corresponding keyframe index(the frames se-
lected here are just for demo).

match the contact marker:

Lamon = 3 3 (min(v®) — ) )

¢ iecC

For SMPL parameters, the global orientation is updated as
0’9 = R.09. For translation, the pelvis’s world position
is transformed as P, = R.P, + T.. Re-evaluating the
SMPL model with 8’9 gives the local pelvis offset P/, and
the updated translation is v' = P, — P}.

The updated camera rotation and translation are com-
puted as R, = R,Rc” and T! = T, — R,Rc'T,, ensur-
ing alignment and consistency of the scene representation.

9. More Details of Monocular Human-Scene
Reconstruction Pipeline

Our monocular reconstruction baseline is a modular
pipeline for reconstructing 3D human pose and scene ge-
ometry from monocular video, combining two independent
modules: 7% for camera trajectory prediction and scene
point cloud reconstruction, and VIMO for SMPL-based hu-
man pose estimation. To process long video sequences, 73
divides frames into overlapping chunks, where each chunk
independently predicts camera poses T, € RT*4*4 and
local point clouds Py € RT*H*XWX3  To align these
chunks into a global coordinate system, Procrustes analy-
sis is applied to the overlapping regions of adjacent chunks.
Given two point clouds X, Y € RYV*3, the alignment min-



imizes the error:

min |Y — (sRX +t)||%, (12)
s,R,t

where s is the scale, R is the rotation matrix, and ¢ is the
translation vector. Using SVD, the optimal alignment pa-
rameters are computed as:

_ trace(Y,' RX,)

R=VSU'
’ trace( X X.) ’

t=Y — sRX,

(13)
where X, Y, are the centered point clouds, and V, U
are derived from the SVD of the covariance matrix H =
X[Y.. After chunk alignment, VIMO predicts SMPL pa-
rameters (6, v, 3), where & € R7*72 represents joint rota-
tions, v € RT*3 is the root translation, and 3 € R de-
fines body shape. Using a weak perspective camera model,
SMPL vertices are projected onto the image plane as:

Timg = ST, + T (14)

where s is the scaling factor proportional to 1/z. To re-
solve scale ambiguity, the pipeline estimates a metric scale
by matching the predicted depths of SMPL vertices zsmpr
(in meters) with the depths of Pi3’s point cloud zp;i3 (in ar-
bitrary units) on some sampled points. The scale factor is
computed as:

s = median ( “r > , (15)
ZSMPL

The point clouds and SMPL global orientation and trans-
lation are transformed to the world coordinate system with
R, t following the same formula as Sec. 8.

10. More Details of Human-Object Interaction
Skills

10.1. Follow Skill

Definition. The path following task requires the simulated
character to move along a predefined 2D trajectory. A tra-
jectory is represented as T = {x{ 1,20 ;.- , T .1, LT}
where z ; denotes a 2D waypoint at simulation time 0.1s,
and T is the episode length. For this task, T is set to 10s.
The character is expected to follow the trajectory 7 as accu-
rately as possible.

Task Observation. Ateach simulation time step ¢, the char-
acter observes 10 future waypoints sampled over the next
1.0s: {7, 2] 014,---»%{408> Z{s0.9}- These waypoints
are sampled at intervals of 0.1s using linear interpolation
from the trajectory 7. The 2D coordlnates of these way-
points form the task observation g € R2x10,

Task Reward. The reward for this task, rt , 1s computed
based on the distance between the character’s current 2D

root position, 7124

ward is defined as:

, and the target waypoint, . The re-

r{ = exp (— 2.0[2°2 — 7 ||?). (16)

10.2. Sit Skill

Definition. The sitting task requires the character to posi-
tion its root joint at a target 3D sitting location on an object
surface. The target position is defined as 10 cm above the
center of the top surface of the chair seat.

Task Observation. The observation gi € R3® includes
the 3D target sitting position € R?, the 3D root position
€ IR3, the root rotation € R, the 2D front-facing direction
€ R?, and the positions of eight corner points of the object’s
bounding box € R3*8,

Task Reward. The sitting task reward 7§ encourages the
character to minimize the distance between its 3D root po-

sition, z1°*, and the target sitting position, z*". It is defined
as:
o JoTrer 03 (ot — gt > 0.5,
™= 0.7 7 4 0.3, otherwise,
A7)

near

where r 4 and r{°* are defined as:

far = exp ( —9. 0”1 5 — d* . root 2d|| ) (18)

T?ear = exp ( —10. Othar _ rootHQ). (19)

bj_2 s, root_2d

Here, x; 4 is the 2D position of the object’s root,
is the 2D linear velocity of the character’s root, and d* isa
horizontal unit vector pointing from #1024 to 2%,

10.3. Climb Skill

Definition. The climbing task requires the character to
place its root joint at a target 3D climbing position on a
given object. The target position is set 94 cm above the
center of the top surface of the object.

Task Observation. The observation g/ € R?7 includes
the 3D target root position € R3 and the 3D coordinates of
eight corner points of the object’s bounding box € R3*8,
Task Reward. The climbing task reward r;"* minimizes the

3D distance between the character’s root, i, and the tar-
get location, z'". The reward is defined as:
o 0. 5T.near + 0. 2rfar H Ubjid ;ootld” > 0.77
¢ 0.5 7% + 0.2 + 0.3 70 otherwise,
(20)
where 77, r]f“r, and rf""‘ are defined as:
near = exp ( —10. O”I rootHQ)7 (21)

" = exp (—2.0||1.5 — dj - &}
it = exp (— 50.0]|(z{" " — 0.94) —

- root. 2d|| ) (22)
Z2). (23)
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Here, z{"-" is the height of the target root position, (x}
0.94) represents the height of the top surface of the target
object in world coordinates, and x°°" is the mean height of
the character’s feet. The reward ,°°" encourages the char-
acter to lift its feet and is crucial for successful climbing.

10.4. Lie Skill

Definition. The lying task requires the character to position
its root joint at a target 3D lying position on an object, typ-
ically centered on the object’s surface. The character must
first approach a designated standing point before transition-
ing into the lying position.

Task Observation. The observation g¢ € R3® includes
the 3D target lying position € R3, the 3D root position
€ R3, the root rotation € RS, the 2D front-facing direc-
tion € R?, and the positions of eight corner points of the
object’s bounding box € R3*8_ It also includes the chosen
standing point € R3.

Task Reward. The lying reward 7! combines rewards for
approaching the standing point and accurately lying down:

foot

Tt ncar (24)

Tt

. 0. 6,rnear +0. 4Tfar eroot ;ar” > 1.57
otherwise.

The far reward encourages approaching the standing
point:

P — 0.5V 4020 4 0.2772M 4 0.1 75 (25)

where 3% rewards walking toward the standing point, 7}°!
facing
aligns velocity, r, ensures proper facing direction, and
r$and rewards correct height.
The near reward focuses on lying accuracy:

PR — 0.5 7P 4 0.3 7 g2 et (6

where rf”* minimizes the distance to the target, r°* aligns

head height, and "€ rewards proper body alignment.

10.5. Prone Skill

Definition. The prone task requires the character to position
its root joint at a designated 3D prone position on an object,
typically centered on the object’s surface. Unlike the lying
task, the character must face downward while maintaining
alignment with the target surface.

Task Observation. The observation gf € R3 includes
the 3D target prone position € R®, the 3D root position
€ RR3, the root rotation € R, the 2D front-facing direction
€ R?, and the positions of eight corner points of the object’s
bounding box € R3*®, These observations help guide the
approach and ensure the correct orientation for prone posi-
tioning.

Task Reward. The prone reward !’ encourages the charac-
ter to transition smoothly from moving to a prone position

head

while maintaining proper alignment and facing downward.
The reward is defined as:

tar” > 1 5
otherwise.

p _
Ty =

near (27)
Ty,

{O 7rncar +0.3 rfar eroot

The far reward encourages approaching the target prone
position:

_ O 5 ,rWalk + 0 2 rVel + 02 T{acing + 01 7J);leigl’lt? (28)

where ¥4 rewards moving toward the prone position, 7!

f
aligns velocity with the direction of motion, 7" ensures
height . ..
proper facing direction, and 7, encourages maintaining
an appropriate height during approach.
The near reward focuses on prone accuracy:

PR — 0.6 7P 4 0.2 MmN |, g pface-down o (9g)

where 77 minimizes the distance to the prone target,
lignment . .

ry ¥ ensures proper body alignment with the surface,

and rface-dovn rewwards the character for maintaining a face-

down orientation.

10.6. Support Skill

Definition. The support task encourages the character to
approach a target object and maintain stable interaction by
placing its hands on the top surface while keeping stable
foot placement and proper posture.

Task Observation. The task observation g/ € R27 con-
sists of the 3D target position of the object’s top surface
center (z¢,2¢ € R3) and the 3D coordinates of the eight
corner points of the object’s bounding box (b, € R3*%),
Task Reward. The total reward ;" is defined as:

o 0.4rf +0.6r5, ||z¢ — 27| > 1.5, (30)
Ty, otherwise,

r{ =05exp (—0.5]af - x§||2) 3D

+0.5exp (—2.0[]1.5 — iy |%), (32)

Ty = 0.37"t +0.2r) + 0.157"t +0.2r7 +0.1577, (33)

where r{ encourages the character to approach the object,

and r{ combines five components for stable interaction:

i = 0.6 exp ( — 20|z — 27|1%) (34)

+0.4exp(75||:rt fx,H) (35)
r] :exp(—50\|zf—zg|\ ) (36)
ri =exp (—10|z;" — tleQ), 37
rf = exp (= 2[1.0 - (—up)]?), (38)
ri =exp (— 10z — 27| ) (39)



Here, z¢ and z} denote the 2D positions of the object
and the character’s root, while z{ and z{ are their respective
heights. 272 and 2} represent the 2D position and height
of the hands. Similarly, x{ " x{ l, and z{ refer to the 2D
positions and height of the feet, z, is the ground height, and

—u? is the vertical component of the body’s up direction.
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tribution. tribution.

Duraton (s)

(c) Scene Mesh Area Distribution. (d) Sequence Length Distribution.

Figure 10. Statistical information of collected dataset.

Evaluation The evaluation of the Support task focuses on
the agent’s ability to position its hands on the top surface of
the target object and keep its feet close together. The key
metric is the combined XY-plane distance and Z-axis devi-
ation between the hands and the object’s top surface. The
task is deemed successful if the hands are within predefined
thresholds and the feet maintain adequate proximity for sta-
bility.

11. More Details of Scene-Aware Imitation Pol-
icy
11.1. Representations

Character Proprioception. The state s describes the pro-
prioception of the character’s body, with features consisting
of the relative positions of each link with respect to the root
(designated to be the pelvis), their rotations expressed in
quaternions, and their linear and angular velocities. All fea-
tures are computed in the character’s local coordinate frame,
with the root at the origin and the x-axis along the root link’s
facing direction.

Height Map. To perceive the surrounding scene geome-
try, we utilize a local egocentric height map. This map is
structured as an 11 x 11 grid spanning a 2m X 2m area cen-
tered on the humanoid, resulting in a sampling interval of
0.2m. The grid is defined within the character’s local co-
ordinate frame; consequently, the sampling points dynam-

ically translate and rotate with the humanoid’s movement
and heading, consistently covering the immediate vicinity.
The height values at these grid points are queried from a
high-resolution underlying scene mesh (0.05m resolution)
using nearest-neighbor interpolation.

Target States. The target state ¢ encodes the desired fu-
ture motion of the character. It is constructed by sampling
a short trajectory segment from the dataset spanning three
consecutive future time steps: 7, 7'+ 1, and T+ 2. For each
time step, the state comprises the positions, rotations, lin-
ear velocities, and angular velocities of all body links. All
features are transformed from the world frame into the sim-
ulated character’s local coordinate frame. This local frame
is defined with the character’s root located at the origin and
the x-axis aligned with the root link’s facing direction.
Action. Our simulated humanoid is constructed based on
the SMPL body model, comprising 23 controllable joints.
Each joint possesses 3 degrees of freedom (DoF), and we
employ a Proportional-Derivative (PD) controller for each
DoF. Consequently, the action a € R%Y generated by the
policy specifies the target orientations for these PD con-
trollers.

11.2. Reward

To encourage the character to closely reproduce the ref-
erence motion while maintaining motion naturalness, our
reward function r; is composed of two terms: a tracking
reward r* and a jitter penalty r$™*°", The tracking re-
ward incentivizes the policy to minimize the kinematic er-
ror between the simulated character and the reference mo-
tion. The jitter penalty is introduced to suppress abnormal
shaking generated when the character interacts with objects,
which may be induced by instabilities in the physics simu-
lation. The total reward is defined as:

ry = ,r;rack _ rzmooth. (40)
The tracking reward i is computed as the weighted sum
of exponential differences across all humanoid links:

track

T = wy, exp (—100]|p; — pe?)
+ wir exp (—10(|G; © )

) “n
+ wjy exp (—0.1]; — v¢|?)

+ wj,, exp (—O.1||d:t — wt||2) ,

where the equation penalizes the differences in translation
p, rotation q, linear velocity v, and angular velocity w for
all rigid body links of the humanoid between the simulation
and the reference. The jitter penalty penalizes the magni-
tude of the difference between consecutive actions, defined
as:

Timooth _ Hat o at—1||27 (42)

where a; and a;_; denote the action at the current and pre-
vious time steps, respectively. By minimizing the rate of
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Figure 11. Rendered SMPL and depth images of the captured dataset in camera space.

change of the actions, the policy is incentivized to generate
continuous and stable control trajectories, thereby reducing
jittery behaviors.

12. More Details of Captured Dataset Used in
Main Paper

We collected data from 23 scenes, each with a high-
precision mesh, 104 sequences, and approximately 200,000
video frames. Each frame is accompanied by corresponding
depth maps, segmentation masks, camera trajectories, and
human parameters(bounding boxes, 2D keypoints, SMPL
parameters).

In Fig. 10a, we present the distribution of camera tra-
jectory lengths, which range from 4 meters to over 30 me-
ters. In Fig. 10b, the human trajectory length distribution is
shown, with performers moving between 5 meters and over
30 meters. Figure 10c illustrates the scene mesh area dis-

tribution. Indoor scenes are relatively smaller, ranging from
20 to 90 square meters, while outdoor scenes can be as large
as 200 square meters. Finally, in Fig. 10d, we show the se-
quence length distribution, where most sequences have du-
rations ranging from 30 to 60 seconds.

12.1. Qualitative Demonstrations

We show camera space results in Sec. 10.6 and world space
results in Sec. 12.1
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Figure 12. 3D demo of the captured dataset.
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