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Fig. 1. Introducing EmbodMocap, a portable and low-cost system for simultaneous 4D human and scene reconstruction, deployable anywhere using two
moving iPhones. The dataset captured by EmbodMocap benefits three crucial embodied AI tasks: monocular human & scene reconstruction, physics-based
character animation, and real-world humanoid motion control.
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Human behaviors in the real world naturally encode rich, long-term con-
textual information that can be leveraged to train embodied agents for
perception, understanding, and acting. However, existing capture systems
typically rely on costly studio setups and wearable devices, limiting the
large-scale collection of scene-conditioned human motion data in the wild.
To address this, we propose EmbodMocap, a portable and affordable data
collection pipeline using two moving iPhones. Our key idea is to jointly
calibrate dual RGB-D sequences to reconstruct both humans and scenes
within a unified metric world coordinate frame. The proposed method al-
lows metric-scale and scene-consistent capture in everyday environments
without static cameras or markers, bridging human motion and scene geom-
etry seamlessly. Based on the collected data, we empower three embodied
AI tasks: monocular human-scene-reconstruction, where we fine-tune on
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feedforward models that output metric-scale, world-space aligned humans
and scenes; physics-based character animation, where we prove our data
could be used to scale human-object interaction skills and scene-aware mo-
tion tracking; and robot motion control, where we train a humanoid robot
via sim-to-real RL to replicate human motions depicted in videos. Experi-
mental results validate the effectiveness of our pipeline and its contributions
towards advancing embodied AI research.
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1 Introduction
Embodied Artificial Intelligence (Embodied AI) aims to build agents
that can perceive, understand, and act within real-world environ-
ments. Progress in this field relies on datasets that capture both
human motion and the surrounding 3D scene, enabling physically
grounded perception and action learning. Such scene-aware data al-
lows modeling of realistic human–scene interactions, simulation of
lifelike behaviors, and training of humanoids to operate seamlessly
in complex environments. They serve as a foundation for advancing
embodied reasoning and control across robotics, virtual reality, and
computer vision.

However, collecting high-quality human–scene data remains diffi-
cult. Precise 3D motion and scene geometry cannot be automatically
obtained from internet videos due to occlusions and depth ambiguity.
Existing capture systems that provide high-quality human–scene
data typically rely on multi-view camera rigs [Hassan et al. 2019;
Zhang et al. 2022], wearable motion suits [Kaufmann et al. 2023;
Ma et al. 2024], or LiDAR scanners [Dai et al. 2023; Huang et al.
2022], which are costly, complex, and limited to controlled studio
environments. These constraints hinder scalable and scene-aware
data acquisition, limiting the ability of embodied AI models to learn
from natural human behavior in diverse indoor and outdoor envi-
ronments.
In this paper, we propose EmbodMocap, an efficient and afford-

able framework for capturing metrically accurate 4D human and
scene using only two iPhones. Our key idea is to jointly calibrate
and optimize dual RGB-D inputs to reconstruct both humans and
scenes within a unified world coordinate frame. Specifically, we first
reconstruct the static scene from a single RGB-D sequence to define
the world scale, then capture synchronized dual-view RGB-D videos
of human motion, and finally perform geometric alignment and
motion optimization to recover world-anchored human poses. In
contrast to existing systems that rely on multi-camera rigs or wear-
able sensors, our approach achieves high-quality, scene-consistent
reconstruction using only moving consumer devices. This design
enables scalable, in-the-wild data collection that preserves precise

human motion and authentic scene context, supporting realistic
human–scene interaction modeling for embodied AI research.

Based on the data collected with EmbodMocap, we demonstrate
the reliability and versatility of our capture pipeline through three
representative applications. The first application verifies geometric
consistency, where we fine-tune reconstruction models to jointly re-
cover humans and scenes in world coordinates. The second validates
physical realism, showing that the captured motions enable scalable
training of physics-based character skills and scene-aware motion
tracking. The third demonstrates embodied transferability, where
our data support humanoid robot training through a sim-to-real
motion tracking framework [Liao et al. 2025; Peng et al. 2018]. These
results highlight that EmbodMocap enables scalable and physically
grounded data acquisition for embodied AI.

In summary, our contributions can be summarized as follows:

• We introduce EmbodMocap, a portable and affordable data
collection pipeline that produces high-quality multi-modal
data for embodied AI applications.

• We validate our capture pipeline’s effectiveness across three
key embodied AI tasks: monocular human-scene reconstruc-
tion, physics-based character animation, and real-world hu-
manoid motion control.

• We provide a scalable and accessible solution that lowers the
barrier for embodied AI research, opening new possibilities
for real-world applications and further advancements in the
field. All the codes and datasets will be open-sourced.

2 Related Work
Datasets for 4D Human & Scene Capture. Early motion datasets,
such as AMASS [Harvey et al. 2020; Mahmood et al. 2019], focus on
pure humanmotion, unifyingmultiple motion capture sources into a
large-scale repository. While invaluable for studying human motion,
these datasets lack the 3D scene context essential for understanding
human–scene interactions. Recent 4D datasets, like PROX [Has-
san et al. 2019], RICH [Huang et al. 2022], and EgoBody [Zhang
et al. 2022], combine scanned 3D scenes with motion capture using
multi-view camera systems, while EMDB [Kaufmann et al. 2023] and
SPLOPER4D [Dai et al. 2023], employ IMUs or electromagnetic sen-
sors for motion recording in large-scale environments. Nymeria [Ma
et al. 2024] extends this further with Project Aria glasses and optical
marker-based systems for wide-area motion capture. However, these
approaches face notable limitations: marker-based andmulti-camera
systems are expensive and restricted to small studio environments,
while IMU and EM-based methods, though more flexible, require
extensive manual alignment and post-processing to synchronize
motion with 3D scenes. And the wearable devices will influence
the human appearance in RGB images. In contrast, our approach
uses minimal equipment, operates in diverse environments without
static camera setups, and avoids wearable devices, preserving the
naturalness of RGB images for authentic human–scene interaction
capture. Table 1 compares these datasets.
Monocular Human & Scene Reconstruction. Early works [Bogo
et al. 2016; Goel et al. 2023; Kanazawa et al. 2018; Kocabas et al.
2020; Pavlakos et al. 2019] on RGB-based human mesh recovery
focus on reconstructing 3D pose and shape but often ignore scene
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Table 1. Comparison of 4D Human & Scene datasets based on different features.

Datasets Publication Device Outcome
Mocap Suit Scanner Static Cam. Dyna. Cam. Total Cost($) Mesh Dyna.Anno. Outdoor

PROX [Hassan et al. 2019] ICCV2019 - Structure Sensor Kinetic-One - 2K ✓ ✗ ✗

RICH [Huang et al. 2022] CVPR 2022 - Leica RTC360 6-8×Cameras 1×Camera 20K+ ✓ ✓ ✓

EgoBody [Zhang et al. 2022] ECCV2022 - 1×IPhone 5×Azure Kinect Hololens2 9K ✓ ✓ ✗

SLOPER4D [Dai et al. 2023] CVPR2023 Noitom PN+NUC11 Ouster-os1 LiDAR - DJI-Action2+TLS 20K ✓ ✓ ✓

EMDB [Kaufmann et al. 2023] ICCV 2023 EM Sensors - - 1×IPhone 15K ✗ ✓ ✓

Nymeria [Ma et al. 2024] ECCV2024 2×XSens+Aria Wistband - - 2×Project Aria 60K+ ✗ ✓ ✓

EmbodMocap - - 1×IPhone - 2×IPhone 1K ✓ ✓ ✓

context [Tripathi et al. 2023] or camera information [Kocabas et al.
2021; Wang et al. 2023], leading to inconsistencies under camera mo-
tion. Recent methods address this by combining motion cues [Yuan
et al. 2022], SLAM or visual odometry [Shin et al. 2024; Wang et al.
2024b; Ye et al. 2023], and human motion priors [Shen et al. 2024;
Yuan et al. 2022] to recover global trajectories in world coordinates.

Emerging models move toward jointly reconstructing humans
and 3D scenes with spatial intelligence models [Wang et al. 2025a,
2024a]. For example, HSFM [Müller et al. 2025] combines Dust3R [Wang
et al. 2024a] with multi-view correspondence to jointly recover hu-
man meshes, scene point clouds, and camera parameters from multi-
cameras. HAMSt3R [Rojas et al. 2025] integrates DensePose [Güler
et al. 2018] and multi-view scene reconstruction in one model, with
an optimization to get human poses, while JOSH [Liu et al. 2025]
uses MASt3R-SLAM [Murai et al. 2025] and joint optimization to
achieve globally consistent 4D human-scene reconstructions. This
trend emphasizes the simultaneous prediction of human motion and
scene geometry, which futher requires multi-model data pairs with
high-quality annotations. In our paper, we propose a monocular
human & scene reconstruction pipeline combined with 2 feedfor-
ward models, and finetuned it on our proposed dataset to prove the
efficiency of our paired data.
TrainingHumanoid fromVideoData.Recent advances in physics-
based animation and reinforcement learning enable humanoid agents
to perform realistic and physically consistent motions using con-
trol policies learned from marker-based motion capture data. These
methods have shown strong realism in tasks like motion track-
ing [Luo et al. 2023a; Peng et al. 2018], locomotion [Luo et al. 2023b;
Peng et al. 2022, 2021], and human–scene interaction [Pan et al.
2025; Wang et al. 2025b], and have been extended to real-world
applications in motion tracking [He et al. 2025, 2024b; Ji et al. 2024],
locomotion [He et al. 2024c], and scene interaction [Ben et al. 2025;
He et al. 2024a]. However, marker-based methods require dedicated
studios, expensive hardware, and extensive manual effort, making
them costly and hard to scale. Adapting captured motions to new
scenes or robot morphologies also demands complex retargeting and
re-simulation. To address this, recent works like VideoMimic [All-
shire et al. 2025], ASAP [He et al. 2025], and HDMI [Weng et al.
2025] train humanoid control directly from in-the-wild video data.
By using monocular motion capture methods such as TRAM [Wang
et al. 2024b] and GVHMR [Shen et al. 2024], they estimate human
motion from videos and retarget it to virtual humanoids for train-
ing in physical simulators. This video-driven paradigm leverages
diverse real-world data but struggles with capturing complex skills
or scene geometries due to occlusion and depth ambiguities. In this

paper, we propose a method for high-precision human motion and
scene reconstruction that overcomes these limitations.

3 Proposed Capture System
We aim to capture metrically accurate human motion and scene
geometry using only two iPhones. As shown in Fig. 2, our capture
process consists of four sequential stages that progressively recon-
struct and align the scene, cameras, and human motion within a
unified world coordinate frame. We first reconstruct a metrically
accurate static scene and establish the world reference using a single
iPhone RGB-D sequence (Sec. 3.1). Then, we use two synchronized
iPhones to record dual-view RGB-D videos of human motion and
extract per-frame camera poses and human priors with off-the-shelf
perception models (Sec. 3.2). Next, we align the dual-view cam-
era trajectories to the reconstructed scene through a combination
of COLMAP registration and multi-view geometric optimization
(Sec. 3.3). Finally, we refine the SMPL parameters by triangulating
dual-view 2D keypoints into 3D space and optimizing human poses
and translations in the world coordinate system (Sec. 3.4).

3.1 Stage I: Scene Reconstruction
In this stage, we aim to reconstruct a metrically accurate, Z-up scene
mesh that serves as the reference world coordinate system. We first
use a single iPhone to capture an RGB-D video of the scene, along
with synchronized IMU data. The recorded data are processed by
the SpectacularAI SDK (SAI) [spe 2021], which automatically selects
keyframes according to the accumulated camera translation and
estimates corresponding camera parameters (𝑲𝑠 , 𝑹𝑠,𝑛, 𝑻𝑠,𝑛) in Z-up
world coordinates with metric scale. These trajectories establish
a consistent world frame for all subsequent stages. Based on the
recovered poses, we refine the iPhone LiDAR depth maps using
PromptDA [Chen and Shu 2022], unproject them into 3D space,
and integrate the point clouds through TSDF fusion [Curless and
Levoy 1996] to obtain a dense and metrically accurate global mesh
M𝑔 . Note that the depth maps are truncated based on a thresh-
old determined by the effective range of the iPhone’s depth sensor.
Specifically, we use a threshold of 3.5m for indoor scenes and 5m
for outdoor scenes. We further apply lightweight post-processing
such as outlier removal and small-component filtering to clean the
mesh. Finally, we extract SIFT features from the same SAI keyframes
and run COLMAP [Schonberger and Frahm 2016] with fixed cam-
era parameters to build a sparse structure database. This database
preserves the metric scale and serves as a reference for registering
dual-view sequences in later stages.
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Fig. 2. EmbodMocap: We propose an affordable dataset capture and processing system. From left to right, the four stages (Stage-I to Stage-IV) illustrate our
core logic: leveraging high-quality camera matrices provided by SpectacularAI [spe 2021] and aligning sequence coordinates to the scene’s world frame. For
detailed explanations, please refer to section 3.

3.2 Stage II: Sequence Processing
After reconstructing the static scene in Stage I, we proceed to capture
and process dual-view human motion sequences within the same
environment. In this stage, we use two iPhones to record synchro-
nized RGB-D videos of a performer moving inside the reconstructed
scene, with each device providing an independent camera coor-
dinate system. The goal is to convert these raw dual-view videos
into temporally aligned and metrically consistent per-frame human
and camera information, which will serve as the foundation for
subsequent calibration and motion optimization.

Firstly, we use SAI to obtain per-frame calibrated cameras for each
view. Let 𝑣 denote the view index (𝑣 ∈ {𝑣1, 𝑣2}), and let 𝑡 index time.
For each view independently, SAI provides intrinsics and extrinsics
(𝑲𝑣, 𝑹𝑣,𝑡 , 𝑻𝑣,𝑡 ) for every decoded frame 𝑰𝑣,𝑡 in the native coordinate
system of that view. Next, we extract human-related information
using several off-the-shelf models: (i) YOLO [Terven et al. 2023] for
person detection and proposal pruning; (ii) ViTPose [Xu et al. 2022]
for 2D human keypoints with confidence scores; (iii) SAM2 [Ravi
et al. 2024] for person segmentation masks; (iv) PromptDA [Chen
and Shu 2022] to refine dual-view depths; and (v) VIMO [Wang et al.
2024b] for camera space SMPL parameters. Finally, we employ a
laser pointer cue for frame-level synchronization between the two
camera streams. By identifying the frame index where the laser dot
disappears, we temporally align both videos and slice all associated
image, depth, and parameter data accordingly. This process yields
synchronized dual-view RGB-D sequences with calibrated camera
trajectories and per-frame human priors, providing clean inputs for
subsequent sequence calibration.

3.3 Stage III: Sequence Calibration
After obtaining the static scene reconstruction in Stage 3.1 and the
dual-view camera trajectories in Stage 3.2, the next step is to align all
coordinate systems into a unified world frame. At this point, we have

three separate coordinate systems: one for the reconstructed scene
and two for each iPhone camera trajectory estimated by SAI. Since
the dual-view coordinate systems differ from the scene coordinate
system only by rigid transformations, our goal is to optimize these
2 rigid transformations to unify the dual-view coordinates into the
same metric, gravity-aligned world frame. The optimization process
is sensitive to the initial values; therefore, it is necessary to first
obtain a good initial estimate for the rigid transformations.
Get Initial Transformation from COLMAP. We register each
dual-view sequence to the sparse COLMAP model constructed in
Stage 3.1 using the known intrinsics 𝐾𝑣 and background-only SIFT
features F𝑣 , extracted from images with human regions removed.
Matches are established through a trained vocabulary tree [Schön-
berger et al. 2016], and images are registered against the sparse
COLMAP model to obtain COLMAP camera poses (𝑹̂𝑣,𝑡 , 𝑻̂𝑣,𝑡 ) in the
same metric, gravity-aligned world coordinates as the scene.

To obtain the initial rigid transformation aligning the SAI camera
trajectories 𝑻𝑣, 𝑡 with their COLMAP counterparts 𝑻̂𝑣, 𝑡 , we solve
for an offset transformation (𝑠off , 𝑹off , 𝑻 off ) by minimizing:

min
𝑠off ,𝑹off ,𝑻 off

𝑁∑︁
𝑡=1



𝑻̂𝑡 − (𝑠off𝑹off𝑻𝑡 + 𝑻 off )


2

2, (1)

where𝑁 is the number of frames. After centering the trajectories, we
solve this minimization problem using singular value decomposition
(SVD).
For gravity alignment, 𝑹off is constrained to rotations about the 𝑧-
axis, ensuring proper alignment of SAI trajectorieswith the COLMAP
coordinate system.
Calibration via Multiple Constraints.While the rigid transfor-
mations obtained in the previous step provide coarse alignment
between the two camera trajectories and the reconstructed scene,
this initialization alone is not sufficient to achieve accurate synchro-
nization and metric consistency. To further refine the calibration, we
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jointly optimize all alignment parameters by introducing multiple
geometric and photometric constraints across views. Specifically,
we optimize the per-view global offsets 𝑅off

𝑣 (constrained to 𝑧-axis
rotations) and 𝑇 off

𝑣 , using the initial alignment as the starting value.
The aligned camera extrinsics are:

𝑹ali
𝑣,𝑡 = 𝑹off

𝑣 𝑹𝑣,𝑡 , 𝑻 ali
𝑣,𝑡 = 𝑹off

𝑣 𝑻𝑣,𝑡 + 𝑻 off
𝑣 . (2)

The optimization minimizes a composite loss of point tracking
loss, Chamfer distance, and bundle adjustment loss to ensure spatial
consistency between views and the global reconstruction.

Lcalib = 𝜆trackLtrack +
∑︁
𝑣

𝜆ch𝑑Chamfer +
∑︁
𝑣

𝜆baLba,𝑣 . (3)

Through VGGT tracking, a subset of keyframes is selected, yielding
accurate dual-view pixel tracking results in the humanmasks region.
The tracked human surface 2D pixel coordinates 𝒒 (𝑖 )

𝑣,𝑡 , along with
their corresponding depth values 𝑑 (𝑖 )

𝑣,𝑡 , are back-projected into the
world frame:

𝑸 (𝑖 )
𝑣,𝑡 = 𝑑

(𝑖 )
𝑣,𝑡 𝑹

⊤ali
𝑣,𝑡 𝑲−1

𝑣

[
𝒒 (𝑖 )
𝑣,𝑡

1

]
+ 𝑹⊤ali

𝑣,𝑡 𝑻 ali
𝑣,𝑡 , (4)

To enforce track consistency between views, the following loss is
minimized:

Ltrack =
1∑

𝑣,𝑡 |Q𝑣,𝑡 |
∑︁
𝑡

∑︁
𝑖

𝑤̃
(𝑖 )
𝑡



𝑸 (𝑖 )
1,𝑡 − 𝑸 (𝑖 )

2,𝑡


2

2, (5)

Where 𝑸 (𝑖 )
1,𝑡 and 𝑸 (𝑖 )

2,𝑡 are the 3D back-projected coordinates of the
𝑖-th point from view 1 and view 2, respectively. The weights 𝑤̃ (𝑖 )

𝑡 are
used to control the contribution of each point based on its tracking
confidence. Here 𝑤̃ (𝑖 )

𝑡 = min(𝑤 (𝑖 )
1,𝑡 ,𝑤

(𝑖 )
2,𝑡 ) combines the VGGT confi-

dence scores for the same point across views. The Chamfer distance
term 𝑑Chamfer aligns local pointclouds P𝑣 (𝑣 ∈ {𝑣1, 𝑣2}) with the
global reconstruction Pg sampled from Mg in section 3.1, where
P𝑣 is obtained by reconstructing the scene using the method from
section 3.1 with humans cropped by masks. The Chamfer distance
is formally defined as:

𝑑Chamfer (P𝑣, Pg) =
1

|P𝑣 |
∑︁

𝒑𝑣 ∈P𝑣

min
𝒑g∈Pg

∥𝒑𝑣 − 𝒑g∥2
2

+ 1
|Pg |

∑︁
𝒑g∈Pg

min
𝒑𝑣 ∈P𝑣

∥𝒑g − 𝒑𝑣 ∥2
2 . (6)

Finally, Lba,𝑣 (𝑣 ∈ {𝑣1, 𝑣2}) ensures reprojection consistency for
persistent matches, where the points are obtained from COLMAP
image registration:

Lba,𝑣 =
1

|𝑀𝑣 |
∑︁

(𝑡, 𝑗 ) ∈𝑀𝑣



𝒙𝑣,𝑡, 𝑗 − 𝜋 (𝑲𝑣, 𝑹
ali
𝑣,𝑡 , 𝑻

ali
𝑣,𝑡 ,𝑿 𝑗 )



2
2 . (7)

We solve Eq. (3) using the Adam [Kingma and Ba 2014] optimizer
with gradient clipping. For yaw-only updates, 𝑅off

𝑣 is parameterized
by a single z-axis angle to preserve gravity alignment.

3.4 Stage IV: Motion Optimization
After obtaining calibrated dual-view trajectories and a unified scene
coordinate system in Stage 3.3, we further refine the human recon-
struction results to achieve accurate and temporally consistent body
motions in the world frame. At this stage, both camera poses and
scene geometry are fixed, allowing us to focus on optimizing the
human parameters. We first triangulate dual-view 2D keypoints
into world-space 3D keypoints, which serve as reliable geometric
constraints across views. Then, we optimize the SMPL parameters
using these triangulated 3D keypoints to recover precise body poses
and translations under the unified world coordinate system.
3D Keypoint Triangulation. To triangulate the 3D keypoints 𝑌𝑡, 𝑗
from their 2D projections {𝑦𝑣,𝑡, 𝑗 }, we estimate the 3D position by
minimizing the weighted reprojection error across all views:

min
𝒀𝑡,𝑗

𝑉∑︁
𝑣=1

𝑐𝑣,𝑡, 𝑗


𝒚𝑣,𝑡, 𝑗 − 𝑷𝑣𝒀𝑡, 𝑗



2
2, (8)

where 𝑷𝑣 = 𝑲𝑣 [𝑹𝑣,𝑡 | 𝑻𝑣,𝑡 ] is the camera projection matrix for the 𝑣-
th view. The problem can be formulated as a weighted least squares
optimization. Using SVD, 𝒀𝑡, 𝑗 is obtained as the right singular vector
corresponding to the smallest singular value of 𝑨.
World-Space SMPLify. Start from initial shape 𝜷0 and body pose
𝜽 b,0
𝑡 in section 3.2, our World Frame SMPLify [Loper et al. 2015]

jointly optimizes shape 𝜷 ∈ R10, per-frame pose 𝜽𝑡 = {𝜽 g
𝑡 , 𝜽

b
𝑡 } ∈ R72

and root translation 𝜸𝑡 ∈ R3 by minimizing:

LSMPLify = L3D + Lsmooth + Lprior + Lreproj (9)

We use a two-stage optimization phase to ensure the smoothness
and alignment with the original dual views, which will be detailed
in Supp.Mat.

4 Experiments
In this section, we validate our capture pipeline’s effectiveness across
three key applications. In section 4.1, we propose a monocular hu-
man & scene reconstruction pipeline and finetune it with our cap-
tured RGBD, cameras, and SMPL annotations. In section 4.2, we
train several human-object interaction skills and scene-aware mo-
tion tracking with our captured motion & scene. In section 4.3, we
train a humanoid in simulator and deploy it to real-world robot.

4.1 Monocular Human & Scene Reconstruction
Motivation.We propose a data scheme combining RGBD data from
dynamic cameras with camera and human motion parameters to
train monocular human and scene reconstruction models. As no
feedforward model exists, we establish a baseline using 𝜋3[Wang
et al. 2025c] for SLAM and VIMO[Wang et al. 2024b] for metric-scale
human motion reconstruction from monocular videos.
Implementation. To process long sequences, videos are divided
into overlapping chunks, with 𝜋3 estimating camera parameters
and local point maps per chunk. Adjacent chunks are aligned using
Procrustes alignment, and scale/transformations are recursively
applied for global consistency. Metric scale is determined as the
median ratio of SMPL to 𝜋3 depth values. SMPL predictions are then
transformed to metric world space. For details, refer to Supp. Mat.
We fine-tuned two 𝜋3 variants table 2 by adding LoRA [Hu et al.
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2022] layers to the camera and point decoders, supervised with the
original 𝜋3 loss. For VIMO, we froze the encoder and finetuned the
decoder with MSE loss on SMPL parameters. A human mask was
used to limit supervision to the human region due to our dataset’s
smaller range.
Metrics. We evaluate motion and trajectory accuracy on global
coordinates using EMDB (subset 2)[Kaufmann et al. 2023], featur-
ing extended sequences with ground-truth trajectories and meshes.
Consistent with prior work[Shin et al. 2024; Wang et al. 2024b],
each sequence is split into 100-frame chunks, and 3D joint errors
are measured using W-MPJPE (aligning the first two frames) and
WA-MPJPE (aligning the entire segment), both in millimeters. Addi-
tionally, Root Translation Error (RTE) is reported as a percentage
(
Results. We present 3 variants in table 2: the proposed baseline
with the original checkpoints from 𝜋3 [Wang et al. 2025c] and
VIMO [Wang et al. 2024b], fine-tuning only VIMO, and fine-tuning
both 𝜋3 and VIMO. The results demonstrate that our approach sig-
nificantly improves the accuracy of VIMO, as we provide paired
high-quality real-world RGB sequences and ground truth SMPL
parameters. Additionally, leveraging our high-quality RGB-D data
and camera parameter pairs, 𝜋3’s ability to predict in the world
coordinate system also shows improvement. Our pipeline shows
good performance on large-scale real-world videos, see fig. 7

Table 2. Comparison of Finetuned Models on EMDB Benchmarks

Finetuned EMDB
Pi3 VIMO WA-MPJPE↓ W-MPJPE↓ RTE↓
✗ ✗ 83.56 229.04 1.78
✗ ✓ 82.89 222.93 1.73
✓ ✓ 82.21 220.65 1.71

4.2 Physics-based Character Animation
4.2.1 Human Object Interaction Skill Training. Motivation. We
train several human-object interaction skills to demonstrate the
physical realism of our approach and the scalability of our capture
framework to new interaction skills. We aim to prove the efficiency
and quality superiority of our framework over optical capture and
monocular estimation methods.
Implementation. Following [Pan et al. 2025; Peng et al. 2021;
Wang et al. 2025b], we train physical character policies use goal-
conditioned reinforcement learning to formulate character control
as a Markov Decision Process (MDP) defined by states, actions, tran-
sition dynamics, a reward function 𝑟 , and a discount factor 𝛾 . The
reward 𝑟𝑡 ∈ R is calculated by a style reward 𝑟𝑠𝑡𝑦𝑙𝑒𝑡 [Peng et al. 2021]
and a task reward 𝑟 𝑡𝑎𝑠𝑘𝑡 . The policies are trained to maximize the
expected discounted return: 𝐽 (𝜋) = E𝑝 (𝜏 |𝜋 )

[∑𝑇−1
𝑡=0 𝛾

𝑡𝑟𝑡
]
, where 𝑇

is the episode length, 𝛾 ∈ [0, 1] is the discount factor, and 𝑟𝑡 is the
reward at time step 𝑡 . We use the widely adopted Proximal Policy
Optimization (PPO) algorithm [Schulman et al. 2017] to train the
control policy model.

Following [Hassan et al. 2023; Pan et al. 2025; Wang et al. 2025b],
we train a set of human object interaction skills in simulator [Makoviy-
chuk et al. 2021], including follow, climb, sit, and lie. These common
interaction skills are designed to guide the character’s root joint

to reach specific target positions in 3D environments while main-
taining physically realistic and motion divisty. We train these four
common skills on 3 different input data: optical captured, which are
collected from AMASS [Mahmood et al. 2019] and SAMP [Hassan
et al. 2021] following TokenHSI [Pan et al. 2025]; ours, by segment-
ing the reconstructed motions into skill clips; monocular, by using
the motion predicted by GVHMR [Shen et al. 2024] which is com-
monly used in humanoid reference motion prediction[He et al. 2025;
Weng et al. 2025], segmented with the same temporal slices as ours.
We also train 2 extra interaction skills which have not been imple-
mented in previous physics-based human object interaction papers:
Prone and Support. We will illustrate the observation, reward de-
signs, and the training details of each skill in Supp.Mat.
Metrics.We follow [Hassan et al. 2021; Xiao et al. 2024] that uses
Success Rate and Contact Error as the main metrics to measure the
quality of interactions quantitatively. Success Rate records the per-
centage of trials that humanoids successfully complete the contact
within a certain threshold. We follow [Hassan et al. 2023; Pan et al.
2024; Xiao et al. 2024] in setting the thresholds for various actions:
20cm for Sit, Follow, and Climb; 30cm for Lie and Prone; and 10cm
for Support. For Support, the error is defined as the distance from
the object surface center to the hand center, while also taking into
account the distance between the two feet. Please see details in
Supp.Mat. We evaluate motion diversity using Average Pairwise
Distance (APD) [Dou et al. 2023], which measures the average pair-
wise distance between joint rotations and positions in generated
samples. Higher APD values indicate greater diversity.
Results.We can find in table 3, for skills such as Follow, Climb, and
Sit, the inherent difficulty is relatively low, and all three data settings
achieve good results, very close to 100%. Although the quality of our
data is slightly inferior to optically captured data, we provide more
variety of task completion trajectories and motion diversities, which
contribute to improve task performance. To prove this, we ablate on
skills trained with different data proportions. 1X and 2X indicate the
ratio of the number of clips relative to the optical capture data. On
the 4 common skills, we observe a general trend where increased
data amount leads to improvements in success rate, contact error,
and APD metrics.

Our new implemented 2 extra skills, Prone and Support, demon-
strate the versatility of our data collection pipeline. First, these new
skills highlight the ability of our approach to generalize to novel
interaction tasks. Second, the Support skill significantly increases
the level of difficulty. Unlike other tasks, where a humanoid only
needs to walk or offload the full body weight onto furniture surface,
Support requires the hands to bear the weight of the body while
the feet remain close together, demanding much higher accuracy
in reference motion generation. This experiment shows that our
approach outperforms monocular estimation methods by a large
margin, particularly for high-difficulty interaction skills. The suc-
cess rate trained on monocular estimated motions degrades to only
20% in table 3. In fig. 5, we can see policy trained on motion esti-
mated from monocular models could not perform standard Support
skill.

4.2.2 Scene-awareMotion Tracking. Motivation.Recentworks [Luo
et al. 2024, 2023b; Peng et al. 2022; Tessler et al. 2024, 2025; Tirinzoni
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Table 3. Comparison of data duration, Success Rate, Contact Error, and
APD for different skills among 3 data settings.

Task Data Clips Duration (min) Rate (%) ↑ Error (cm) ↓ APD ↑

Follow

Optical Mocap 12 1.59 99.9 6.0 20.17 ± 0.19
Ours 1X 12 1.48 99.9 6.7 18.42 ± 0.22
Ours 2X 24 3.06 99.7 6.8 18.45 ± 0.17
Ours Full 148 22.43 99.8 6.2 19.69 ± 0.32
Monocular 148 22.43 98.0 7.2 19.85 ± 0.39

Climb

Optical Mocap 7 0.28 99.9 2.7 22.03 ± 0.30
Ours 1X 7 0.54 99.8 1.8 22.77 ± 0.29
Ours 2X 14 0.97 99.9 1.8 20.72 ± 0.30
Ours Full 21 1.54 99.9 1.8 22.22 ± 0.27
Monocular 21 1.54 99.2 1.8 21.34 ± 0.38

Sit

Optical Mocap 20 4.08 98.0 5.5 16.07 ± 0.39
Ours 1X 20 2.11 99.8 5.4 14.35 ± 0.27
Ours 2X 40 4.47 99.9 5.1 14.46 ± 0.24
Ours Full 80 8.05 99.9 4.7 15.90 ± 0.51
Monocular 80 8.05 98.4 5.7 15.80 ± 0.51

Lie

Optical Mocap 10 2.52 89.0 17.5 8.76 ± 0.14
Ours 1X 10 0.99 85.3 20.2 7.43 ± 0.10
Ours 2X 20 2.32 86.3 19.8 8.27 ± 0.06
Ours Full 39 4.25 89.4 18.8 8.57 ± 0.10
Monocular 39 4.25 81.2 21.0 8.14 ± 0.10

Prone Ours Full 3 0.26 75.4 16.5 17.58 ± 0.69
Monocular 3 0.26 71.2 16.5 16.18 ± 0.30

Support Ours Full 8 0.97 66.0 4.9 21.08 ± 0.59
Monocular 8 0.97 20.6 6.4 20.94 ± 0.48

et al. [n. d.]; Yao et al. 2024] suggest that solving complex tasks
requires pre-training on large-scale human motion data via motion
tracking objectives, in order to obtain reusable and generalizable
skill priors. However, existing motion tracking frameworks are
mainly built for human-only [Luo et al. 2023a] or single-object inter-
action [Xu et al. 2025] scenarios, primarily because current public
datasets are concentrated in these settings. We argue that motion
tracking pre-training on diverse 3D scenes is equally important,
as it also provides rich priors—such as navigation, interaction, and
long-horizon task execution. In this work, we mitigate this gap by:
1) proposing a scene-aware motion tracking framework, and 2) sup-
porting it with high-fidelity paired 3D human-scene data captured
by our EmbodMocap system.
Implementation. We extend MimicKit [Peng 2025] by incorpo-
rating the height map into the observation space to achieve scene-
aware tracking (details in the Supp. Mat.). For training, we use four
3D scenes, each containing several minutes of motion clips, and
train one policy per scene to track all the motion clips in that scene.
Metrics. Policies are evaluated using a success rate metric: an
episode is initialized from a random frame and run for 10s, and
is considered successful if tracking exceeds 8s. For each scene, 3,072
episodes are used to compute average success, failure rates, and
episode length statistics.
Results. The quantitative results in Tab. 4 demonstrate that our data
is simulation-ready, enabling the training of scene-aware tracking
policies with high success rates. The qualitative results, shown in
Fig. 3, further illustrate that the policies not only successfully track
the motions but also adapt to subtle imperfections present in the
data.

4.3 Real-world Humanoid Robot Control
Motivation. Learning from human videos [Allshire et al. 2025; Qiu
et al. 2025; Weng et al. 2025] has emerged as a crucial paradigm
for humanoid robots to learn motor skills at scale. In this section,
we demonstrate how EmbodMocap contributes to this paradigm by
enabling accurate reconstruction of humans and their interacting

Table 4. Quantitative evaluation of scene-aware motion tracking and
dataset statistics across four 3D scenes.

Scene Clips Duration (min) Status Rate (%) Eps. Len. (s)

a 14 12.31 Succ. 87.2 9.97 ± 0.21
Fail. 12.8 3.94 ± 2.10

b 6 3.62 Succ. 96.7 9.99 ± 0.12
Fail. 3.3 4.16 ± 2.38

c 12 7.87 Succ. 95.9 9.98 ± 0.17
Fail. 4.1 5.43 ± 2.18

d 7 5.06 Succ. 90.4 9.96 ± 0.21
Fail. 9.6 4.44 ± 1.92

3D environments from videos, while preserving accurate contact
information.
Implementation.We capture videos of humans performing ground-
contact-richmotions, including locomotion and challenging cartwheels
that require precise hand-ground contact. EmbodMocap is then used
for real-to-sim reconstruction. The produced motions are used to
train a single tracking policy via sim-to-real RL with domain ran-
domization using BeyondMimic [Liao et al. 2025].
Results. We deploy the policy on a real-world High Torque Hi
humanoid robot with 21 joint DoF and a height of 80cm. As shown
in Fig. 6, the robot successfully replicates human motions from
videos, demonstrating that EmbodMocap produces data of sufficient
quality for humanoid robot control.

4.4 Ablation Study on Embodmocap
Ablation on dataset optimization. We conduct an ablation study
on four core loss functions that significantly influence performance
during data optimization, as described in main paper. These loss
functions include tracking loss, Chamfer distance, reprojection loss,
smoothness loss and kp3d loss. To evaluate the performance un-
der different optimization settings, we employ four metrics. First,
IoU(Intersection over Union) measures the overlap between the
rendered SMPL mask and the SAM2 [Ravi et al. 2024] mask. Second,
Reproj evaluates the pixel error between the reprojected SMPL
joints and the 2D keypoints detected by VITPose [Xu et al. 2022].
Third, Depth error is computed as the mean squared error (MSE)
between the rendered depth from SMPL parameters and the sensor
depths refined by PromptDA [Chen and Shu 2022]. Finally, Jitter is
quantified using the same temporal foot skating metric as Motion-
VAE [Ling et al. 2020]. All metrics are averaged across all sequences
and views to ensure a robust evaluation.
The L𝑡𝑟𝑎𝑐𝑘 effectively stitches the two views together, signifi-

cantly improving the overall reconstruction performance, making
it highly impactful on the final results. The L𝑘𝑝3𝑑 provides 3D joint
positions of the human body, and compared to the reprojection loss,
it eliminates the issue of depth ambiguity, thus playing a critical
role in the overall performance.

5 Conclusion
We propose EmbodMocap, a portable and affordable framework
for capturing high-quality 4D human & scene data using only two
iPhones. Our method enables scalable, metrically accurate recon-
struction of human motion and scenes mesh in diverse real-world
environments. Through applications in monocular human-scene
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Table 5. The performance of different optimization settings.

L𝑡𝑟𝑎𝑐𝑘 L𝑐ℎ𝑎𝑚𝑓 𝑒𝑟 L𝑟𝑒𝑝𝑟𝑜 𝑗 L𝑠𝑚𝑜𝑜𝑡ℎ L𝑘𝑝3𝑑 IoU(%)↑ Reproj↓ Depth↓ Jitter↓
✗ ✓ ✓ ✓ ✓ 54.3 44.2 2.372 0.0371

✓ ✗ ✓ ✓ ✓ 72.5 10.9 0.081 0.0131

✓ ✓ ✗ ✓ ✓ 72.3 11.1 0.079 0.0130

✓ ✓ ✓ ✗ ✓ 72.1 10.4 0.087 0.0160

✓ ✓ ✓ ✓ ✗ 59.3 20.4 0.609 0.0126

✓ ✓ ✓ ✓ ✓ 73.0 9.3 0.078 0.0128

reconstruction, physics-based character animation, and humanoid
robot motion control, we demonstrate the effectiveness and scal-
ability of our approach. By lowering the barrier for embodied AI
research, EmbodMocap opens new opportunities for real-world
applications.
Limitations and Future Work. Our data collection pipeline en-
counters limitations in specific scenarios. For example, it fails to
record depth when the distance exceeds the range of the iPhone Li-
DAR sensor (approximately 5 meters). Additionally, it struggles with
scenes dominated by moving objects, which degrade the results of
the SLAM SDK [spe 2021]. Extremely bright lighting conditions can
also cause COLMAP failures, leading to incorrect registration. Fu-
ture work could integrate more robust structure-from-motion tools,
such as H-Loc [Sarlin et al. 2019], to improve reliability. Moreover,
incorporating automatic synchronization APPs on iPhone could
further reduce human effort.
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Simulation Reference(c)

(a) Simulation Reference Simulation Reference

Simulation Reference(d)

(b)

Fig. 3. We present qualitative results of scene-aware motion tracking, showing four long-term motion examples in different scenes (a, b, c, and d), including
daily indoor and outdoor interactions such as walking, sitting, lying, stair climbing, and touching. Our motion tracking framework not only accurately tracks
the reference motion but also ensures physical realism, resolving subtle issues, such as interpenetration and floating artifacts, present in the reference data
(see zoomed-in views on the right).

Walk Climb LieSit

O
p
ti
c
a
l

M
o
n
o
cu
la
r

O
u
rs

Fig. 4. Qualitative comparison on 4 basic skills.
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Fig. 5. Qualitative comparison on 2 additional skills.

Fig. 6. A real-world humanoid robot imitating human motions depicted in
videos.

Craig-Boris ’25, January 1–5, 2025, TBa, TAS, USA.



12 • WenJia Wang, Liang Pan, Huaijin Pi, Yuke Lou, Xuqian Ren, Yifan Wu, Zhouyingcheng Liao, Lei Yang, and Taku Komura

Fig. 7. Quality results of proposed 4D Human & Scene Reconstruction pipeline on EMDB dataset.

(1) Living room1 (2) Living room2 (3) Living room3 (4) Bedroom1

(5) Garden1 (6) Stairs1 (7) Stairs2

(9) Garden2

(11) Garden3(10) Stairs3

(8) Wall1

(12) Wall2

Fig. 8. 3D demo of the captured dataset. With human keyframes placed in scanned world space 3D mesh.
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B More Details of EmbodMocap

B.1 Human Labor Analysis
Temporal Synchronization. This step only needs the operator to
identify and input the frame indices where the laser pointer’s spot
disappears into a .xlsx file. Typically, this process takes only about
1 minute per sequence.
Skill Segmentation. Skill segmentation is only required when
training physical interaction skills. The operator annotates each
skill’s category, start, and end times based on the video, typically
taking 0.5 to 2 minutes per sequence.
Contact Label & Optimization. In the main text, we mention
that the alignment between our sequence and the scene coordinate
system relies on photometric (COLMAP, pixel tracking) and geo-
metric constraints (chamfer distance). However, this can sometimes
result in alignment errors of a few centimeters, primarily due to
depth inaccuracies in COLMAP’s sparse keypoints and depth er-
rors from the iPhone sensor. To address this issue, we propose an
optional post-processing solution. During data capture, we place
markers in the scene and instruct the performer to begin walking

Fig. 9. An example in finding the contact marker in software (e.g., Meshlab)
and corresponding keyframe index(the frames selected here are just for
demo).

from a designated marker and stop on another at the end of the
sequence, standing still on the same marker. Annotating contact
frame indices costs 1-2 minutes for each sequence. These markers
serve as fixed reference points for alignment. In post-processing, we
observe the corresponding marker positions on the reconstructed
mesh and record their 3D coordinates, along with the frame indices
where the performer stands on the markers. Using this information,
we optimize a rigid transformation to align the center of the per-
former’s feet at the specified frame indices to the 3D coordinates of
the markers.
Since SAI [spe 2021] could generate Z-up metric-scaled camera

matrices, we define the rigid transformation in the xy-plane, defined
by a rotation angle 𝜙𝑐 about the z-axis and a translation 𝑻𝑐 . This can
be represented by a homogeneous transformation matrix 𝑴 :

𝑀 =

[
𝑹 (𝜙𝑐 ) 𝑻𝑐
0 1

]
=


cos(𝜙𝑐 ) − sin(𝜙𝑐 ) 0 𝑡𝑥
sin(𝜙𝑐 ) cos(𝜙𝑐 ) 0 𝑡𝑦

0 0 1 𝑡𝑧
0 0 0 1

 (10)

This matrix transform the center of lowest point on both feet to
match the annotate marker. To robustly solve for the transformation
parameters, we employ a gradient descent optimization, constrained
by a minimizing a contact loss to match the contact marker:

Lcontact =
1
𝑁𝑐

∑︁
𝑖∈C

(
min
𝑧

(V (𝑖 ) ) − 𝑐 (𝑖 )𝑧

)2
(11)

For SMPL parameters, the global orientation is updated as 𝜽 ′𝑔 =

𝑹𝑐𝜽𝑔 . For translation, the pelvis’s world position is transformed as
𝑷 ′
𝑤 = 𝑹𝑐𝑷𝑤 + 𝑻𝑐 . Re-evaluating the SMPL model with 𝜽 ′𝑔 gives the

local pelvis offset 𝑷 ′
𝑙
, and the updated translation is 𝜸 ′ = 𝑷 ′

𝑤 − 𝑷 ′
𝑙
.

The updated camera rotation and translation are computed as
𝑹′
𝑣 = 𝑹𝑣𝑹𝑐𝑇 and 𝑻 ′

𝑣 = 𝑻𝑣 − 𝑹𝑣𝑹𝑐𝑇𝑻𝑐 , ensuring alignment and con-
sistency of the scene representation.

C More Details of Monocular Human-Scene
Reconstruction Pipeline

Our monocular reconstruction baseline is a modular pipeline for
reconstructing 3D human pose and scene geometry from monocular
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video, combining two independent modules: 𝜋3 for camera trajec-
tory prediction and scene point cloud reconstruction, and VIMO
for SMPL-based human pose estimation. To process long video se-
quences, 𝜋3 divides frames into overlapping chunks, where each
chunk independently predicts camera poses 𝑻𝑣 ∈ R𝑇×4×4 and local
point clouds 𝑷local ∈ R𝑇×𝐻×𝑊 ×3. To align these chunks into a global
coordinate system, Procrustes analysis is applied to the overlapping
regions of adjacent chunks. Given two point clouds 𝑿 , 𝒀 ∈ R𝑁×3,
the alignment minimizes the error:

min
𝑠,𝑹,𝒕

∥𝒀 − (𝑠𝑹𝑿 + 𝒕)∥2
𝐹 , (12)

where 𝑠 is the scale, 𝑹 is the rotation matrix, and 𝒕 is the translation
vector. Using SVD, the optimal alignment parameters are computed
as:

𝑹 = 𝑽𝑺𝑼⊤, 𝑠 =
trace(𝒀⊤

𝑐 𝑹𝑿𝑐 )
trace(𝑿⊤

𝑐 𝑿𝑐 )
, 𝒕 = 𝒀̄ − 𝑠𝑹𝑿̄ , (13)

where 𝑿𝑐 , 𝒀𝑐 are the centered point clouds, and 𝑽 , 𝑼 are derived
from the SVD of the covariance matrix 𝑯 = 𝑿⊤

𝑐 𝒀𝑐 . After chunk
alignment, VIMO predicts SMPL parameters (𝜽 ,𝜸 , 𝜷), where 𝜽 ∈
R𝑇×72 represents joint rotations, 𝜸 ∈ R𝑇×3 is the root translation,
and 𝜷 ∈ R10 defines body shape. Using a weak perspective camera
model, SMPL vertices are projected onto the image plane as:

𝒙img = 𝑠𝒙𝑣 + 𝒕 (14)

where 𝑠 is the scaling factor proportional to 1/𝑧. To resolve scale
ambiguity, the pipeline estimates a metric scale by matching the
predicted depths of SMPL vertices 𝑧SMPL (in meters) with the depths
of Pi3’s point cloud 𝑧Pi3 (in arbitrary units) on some sampled points.
The scale factor is computed as:

𝑠 =median
(
𝑧𝜋3

𝑧SMPL

)
, (15)

The point clouds and SMPL global orientation and translation are
transformed to the world coordinate system with 𝑹, 𝒕 following the
same formula as section B.1.

D More Details of Human-Object Interaction Skills

D.1 Follow Skill
Definition. The path following task requires the simulated char-
acter to move along a predefined 2D trajectory. A trajectory is
represented as 𝜏 = {𝑥𝜏0.1, 𝑥𝜏0.2, . . . , 𝑥𝜏𝑇−0.1, 𝑥

𝜏
𝑇
}, where 𝑥𝜏0.1 denotes a

2D waypoint at simulation time 0.1𝑠 , and 𝑇 is the episode length.
For this task, 𝑇 is set to 10𝑠 . The character is expected to follow the
trajectory 𝜏 as accurately as possible.
Task Observation. At each simulation time step 𝑡 , the character
observes 10 future waypoints sampled over the next 1.0𝑠 : {𝑥𝜏𝑡 , 𝑥𝜏𝑡+0.1,

. . . , 𝑥𝜏
𝑡+0.8, 𝑥

𝜏
𝑡+0.9}. These waypoints are sampled at intervals of 0.1𝑠

using linear interpolation from the trajectory 𝜏 . The 2D coordinates
of these waypoints form the task observation 𝑔𝑓𝑡 ∈ R2×10.
Task Reward. The reward for this task, 𝑟 𝑓𝑡 , is computed based
on the distance between the character’s current 2D root position,
𝑥
root_2d
𝑡 , and the target waypoint, 𝑥𝜏𝑡 . The reward is defined as:

𝑟
𝑓

𝑡 = exp
(
− 2.0∥𝑥 root_2d𝑡 − 𝑥𝜏𝑡 ∥2) . (16)

D.2 Sit Skill
Definition. The sitting task requires the character to position its
root joint at a target 3D sitting location on an object surface. The
target position is defined as 10 cm above the center of the top surface
of the chair seat.
Task Observation. The observation𝑔𝑠𝑡 ∈ R38 includes the 3D target
sitting position ∈ R3, the 3D root position ∈ R3, the root rotation
∈ R6, the 2D front-facing direction ∈ R2, and the positions of eight
corner points of the object’s bounding box ∈ R3×8.
Task Reward. The sitting task reward 𝑟𝑠𝑡 encourages the character
to minimize the distance between its 3D root position, 𝑥 root𝑡 , and the
target sitting position, 𝑥 tar𝑡 . It is defined as:

𝑟𝑠𝑡 =

{
0.7 𝑟near𝑡 + 0.3 𝑟 far𝑡 , ∥𝑥obj_2d𝑡 − 𝑥 root_2d𝑡 ∥ > 0.5,
0.7 𝑟near𝑡 + 0.3, otherwise,

(17)

where 𝑟 far𝑡 and 𝑟near𝑡 are defined as:

𝑟 far𝑡 = exp
(
− 2.0∥1.5 − 𝑑∗𝑡 · ¤𝑥

root_2d
𝑡 ∥2), (18)

𝑟near𝑡 = exp
(
− 10.0∥𝑥 tar𝑡 − 𝑥 root𝑡 ∥2) . (19)

Here, 𝑥obj_2d𝑡 is the 2D position of the object’s root, ¤𝑥 root_2d𝑡 is the
2D linear velocity of the character’s root, and 𝑑∗𝑡 is a horizontal unit
vector pointing from 𝑥

root_2d
𝑡 to 𝑥obj_2d𝑡 .

D.3 Climb Skill
Definition. The climbing task requires the character to place its
root joint at a target 3D climbing position on a given object. The
target position is set 94 cm above the center of the top surface of
the object.
Task Observation. The observation 𝑔𝑚𝑡 ∈ R27 includes the 3D
target root position ∈ R3 and the 3D coordinates of eight corner
points of the object’s bounding box ∈ R3×8.
Task Reward. The climbing task reward 𝑟𝑚𝑡 minimizes the 3D
distance between the character’s root, 𝑥 root𝑡 , and the target location,
𝑥 tar𝑡 . The reward is defined as:

𝑟𝑚𝑡 =

{
0.5 𝑟near𝑡 + 0.2 𝑟 far𝑡 , ∥𝑥obj_2d𝑡 − 𝑥 root_2d𝑡 ∥ > 0.7,
0.5 𝑟near𝑡 + 0.2 + 0.3 𝑟 foot𝑡 , otherwise,

(20)

where 𝑟near𝑡 , 𝑟 far𝑡 , and 𝑟 foot𝑡 are defined as:

𝑟near𝑡 = exp
(
− 10.0∥𝑥 tar𝑡 − 𝑥 root𝑡 ∥2), (21)

𝑟 far𝑡 = exp
(
− 2.0∥1.5 − 𝑑∗𝑡 · ¤𝑥

root_2d
𝑡 ∥2), (22)

𝑟 foot𝑡 = exp
(
− 50.0∥(𝑥 tar_h𝑡 − 0.94) − 𝑥 foot_h𝑡 ∥2) . (23)

Here, 𝑥 tar_h𝑡 is the height of the target root position, (𝑥 tar_h𝑡 − 0.94)
represents the height of the top surface of the target object in world
coordinates, and 𝑥 foot_h𝑡 is the mean height of the character’s feet.
The reward 𝑟 foot𝑡 encourages the character to lift its feet and is crucial
for successful climbing.
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D.4 Lie Skill
Definition. The lying task requires the character to position its root
joint at a target 3D lying position on an object, typically centered on
the object’s surface. The character must first approach a designated
standing point before transitioning into the lying position.
Task Observation. The observation𝑔𝑙𝑡 ∈ R38 includes the 3D target
lying position ∈ R3, the 3D root position ∈ R3, the root rotation
∈ R6, the 2D front-facing direction ∈ R2, and the positions of eight
corner points of the object’s bounding box ∈ R3×8. It also includes
the chosen standing point ∈ R3.
Task Reward. The lying reward 𝑟 𝑙𝑡 combines rewards for approach-
ing the standing point and accurately lying down:

𝑟 𝑙𝑡 =

{
0.6 𝑟near𝑡 + 0.4 𝑟 far𝑡 , ∥𝑥 root𝑡 − 𝑥 tar𝑡 ∥ > 1.5,
𝑟near𝑡 , otherwise.

(24)

The far reward encourages approaching the standing point:

𝑟 far𝑡 = 0.5 𝑟walk𝑡 + 0.2 𝑟 vel𝑡 + 0.2 𝑟 facing𝑡 + 0.1 𝑟 stand𝑡 , (25)

where 𝑟walk𝑡 rewards walking toward the standing point, 𝑟 vel𝑡 aligns
velocity, 𝑟 facing𝑡 ensures proper facing direction, and 𝑟 stand𝑡 rewards
correct height.
The near reward focuses on lying accuracy:

𝑟near𝑡 = 0.5 𝑟pos𝑡 + 0.3 𝑟head𝑡 + 0.2 𝑟 alignment
𝑡 , (26)

where 𝑟pos𝑡 minimizes the distance to the target, 𝑟head𝑡 aligns head
height, and 𝑟 alignment

𝑡 rewards proper body alignment.

D.5 Prone Skill
Definition. The prone task requires the character to position its
root joint at a designated 3D prone position on an object, typically
centered on the object’s surface. Unlike the lying task, the character
must face downward while maintaining alignment with the target
surface.
Task Observation. The observation 𝑔𝑝𝑡 ∈ R35 includes the 3D tar-
get prone position ∈ R3, the 3D root position ∈ R3, the root rotation
∈ R6, the 2D front-facing direction ∈ R2, and the positions of eight
corner points of the object’s bounding box ∈ R3×8. These observa-
tions help guide the approach and ensure the correct orientation
for prone positioning.
Task Reward. The prone reward 𝑟𝑝𝑡 encourages the character to
transition smoothly frommoving to a prone positionwhile maintain-
ing proper alignment and facing downward. The reward is defined
as:

𝑟
𝑝

𝑡 =

{
0.7 𝑟near𝑡 + 0.3 𝑟 far𝑡 , ∥𝑥 root𝑡 − 𝑥 tar𝑡 ∥ > 1.5,
𝑟near𝑡 , otherwise.

(27)

The far reward encourages approaching the target prone position:

𝑟 far𝑡 = 0.5 𝑟walk𝑡 + 0.2 𝑟 vel𝑡 + 0.2 𝑟 facing𝑡 + 0.1 𝑟height𝑡 , (28)

where 𝑟walk𝑡 rewards moving toward the prone position, 𝑟 vel𝑡 aligns
velocity with the direction of motion, 𝑟 facing𝑡 ensures proper facing
direction, and 𝑟height𝑡 encourages maintaining an appropriate height
during approach.
The near reward focuses on prone accuracy:

𝑟near𝑡 = 0.6 𝑟pos𝑡 + 0.2 𝑟 alignment
𝑡 + 0.2 𝑟 face_down𝑡 , (29)

where 𝑟pos𝑡 minimizes the distance to the prone target, 𝑟 alignment
𝑡 en-

sures proper body alignment with the surface, and 𝑟 face_down𝑡 rewards
the character for maintaining a face-down orientation.

D.6 Support Skill
Definition. The support task encourages the character to approach
a target object and maintain stable interaction by placing its hands
on the top surface while keeping stable foot placement and proper
posture.
Task Observation. The task observation 𝑔𝑚𝑡 ∈ R27 consists of the
3D target position of the object’s top surface center (𝑥𝑜𝑡 , 𝑧𝑜𝑡 ∈ R3)
and the 3D coordinates of the eight corner points of the object’s
bounding box (𝑏𝑡 ∈ R3×8).
Task Reward. The total reward 𝑟𝑚𝑡 is defined as:

𝑟𝑚𝑡 =

{
0.4𝑟 𝑓𝑡 + 0.6𝑟𝑠𝑡 , ∥𝑥𝑜𝑡 − 𝑥𝑟𝑡 ∥ > 1.5,
𝑟𝑠𝑡 , otherwise,

(30)

𝑟
𝑓

𝑡 = 0.5 exp
(
− 0.5∥𝑥𝑜𝑡 − 𝑥𝑟𝑡 ∥2) (31)

+ 0.5 exp
(
− 2.0∥1.5 − 𝑑∗𝑡 · ¤𝑥𝑟𝑡 ∥2), (32)

𝑟𝑠𝑡 = 0.3𝑟ℎ𝑡 + 0.2𝑟𝑔𝑡 + 0.15𝑟 𝑡𝑡 + 0.2𝑟𝑜𝑡 + 0.15𝑟𝑧𝑡 , (33)

where 𝑟 𝑓𝑡 encourages the character to approach the object, and 𝑟𝑠𝑡
combines five components for stable interaction:

𝑟ℎ𝑡 = 0.6 exp
(
− 20∥𝑧ℎ𝑡 − 𝑧𝑜𝑡 ∥2) (34)

+ 0.4 exp
(
− 5∥𝑥ℎ2

𝑡 − 𝑥𝑜𝑡 ∥2), (35)

𝑟
𝑔

𝑡 = exp
(
− 50∥𝑧 𝑓𝑡 − 𝑧𝑔 ∥2), (36)

𝑟 𝑡𝑡 = exp
(
− 10∥𝑥 𝑓 𝑟𝑡 − 𝑥 𝑓 𝑙𝑡 ∥2), (37)

𝑟𝑜𝑡 = exp
(
− 2∥1.0 − (−𝑢𝑏𝑡 )∥2), (38)

𝑟𝑧𝑡 = exp
(
− 10∥𝑧𝑟𝑡 − 𝑧𝑜𝑡 ∥2) . (39)

Here, 𝑥𝑜𝑡 and 𝑥𝑟𝑡 denote the 2D positions of the object and the
character’s root, while 𝑧𝑜𝑡 and 𝑧𝑟𝑡 are their respective heights. 𝑥ℎ2

𝑡

and 𝑧ℎ𝑡 represent the 2D position and height of the hands. Similarly,
𝑥
𝑓 𝑟

𝑡 , 𝑥 𝑓 𝑙𝑡 , and 𝑧 𝑓𝑡 refer to the 2D positions and height of the feet, 𝑧𝑔 is
the ground height, and −𝑢𝑏𝑡 is the vertical component of the body’s
up direction.
Evaluation The evaluation of the Support task focuses on the
agent’s ability to position its hands on the top surface of the target
object and keep its feet close together. The key metric is the com-
bined XY-plane distance and Z-axis deviation between the hands and
the object’s top surface. The task is deemed successful if the hands
are within predefined thresholds and the feet maintain adequate
proximity for stability.

E More Details of Scene-Aware Imitation Policy

E.1 Representations
Character Proprioception. The state 𝑠 describes the propriocep-
tion of the character’s body, with features consisting of the relative
positions of each link with respect to the root (designated to be the
pelvis), their rotations expressed in quaternions, and their linear
and angular velocities. All features are computed in the character’s
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(a) Camera Trajectory Length Distri-
bution.

(b) Human Trajectory Length Distri-
bution.

(c) Scene Mesh Area Distribution. (d) Sequence Length Distribution.

Fig. 10. Statistical information of collected dataset.

local coordinate frame, with the root at the origin and the x-axis
along the root link’s facing direction.
Height Map. To perceive the surrounding scene geometry, we uti-
lizes a local egocentric height map. This map is structured as an
11 × 11 grid spanning a 2m × 2m area centered on the humanoid,
resulting in a sampling interval of 0.2m. The grid is defined within
the character’s local coordinate frame; consequently, the sampling
points dynamically translate and rotate with the humanoid’s move-
ment and heading, consistently covering the immediate vicinity. The
height values at these grid points are queried from a high-resolution
underlying scene mesh (0.05m resolution) using nearest-neighbor
interpolation.
Target States. The target state 𝑞 encodes the desired future motion
of the character. It is constructed by sampling a short trajectory
segment from the dataset spanning three consecutive future time
steps:𝑇,𝑇 + 1, and𝑇 + 2. For each time step, the state comprises the
positions, rotations, linear velocities, and angular velocities of all
body links. All features are transformed from the world frame into
the simulated character’s local coordinate frame. This local frame is
defined with the character’s root located at the origin and the x-axis
aligned with the root link’s facing direction.
Action. Our simulated humanoid is constructed based on the SMPL
bodymodel, comprising 23 controllable joints. Each joint possesses 3
degrees of freedom (DoF), and we employ a Proportional-Derivative
(PD) controller for each DoF. Consequently, the action 𝑎 ∈ R69

generated by the policy specifies the target orientations for these
PD controllers.

E.2 Reward
To encourage the character to closely reproduce the reference mo-
tion while maintaining motion naturalness, our reward function 𝑟𝑡 is
composed of two terms: a tracking reward 𝑟 track𝑡 and a jitter penalty
𝑟 smooth
𝑡 . The tracking reward incentivizes the policy to minimize

the kinematic error between the simulated character and the refer-
ence motion. The jitter penalty is introduced to suppress abnormal
shaking generated when the character interacts with objects, which
may be induced by instabilities in the physics simulation. The total
reward is defined as:

𝑟𝑡 = 𝑟
track
𝑡 − 𝑟 smooth

𝑡 . (40)

The tracking reward 𝑟 track𝑡 is computed as the weighted sum of
exponential differences across all humanoid links:

𝑟 track𝑡 =𝑤jp exp
(
−100∥𝒑̂𝑡 − 𝒑𝑡 ∥2)

+𝑤jr exp
(
−10∥𝒒̂𝑡 ⊖ 𝒒𝑡 ∥2)

+𝑤jv exp
(
−0.1∥𝒗𝑡 − 𝒗𝑡 ∥2)

+𝑤j𝜔 exp
(
−0.1∥𝝎̂𝑡 − 𝝎𝑡 ∥2) ,

(41)

where the equation penalizes the differences in translation 𝒑, rota-
tion 𝒒, linear velocity 𝒗, and angular velocity 𝝎 for all rigid body
links of the humanoid between the simulation and the reference.
The jitter penalty penalizes the magnitude of the difference between
consecutive actions, defined as:

𝑟 smooth
𝑡 = ∥𝒂𝑡 − 𝒂𝑡−1∥2, (42)

where 𝒂𝑡 and 𝒂𝑡−1 denote the action at the current and previous
time steps, respectively. By minimizing the rate of change of the
actions, the policy is incentivized to generate continuous and stable
control trajectories, thereby reducing jittery behaviors.

F More Details of the Captured Dataset

F.1 Statisticals
We collected data from 23 scenes, each with a high-precision mesh,
104 sequences, and approximately 200,000 video frames. Each frame
is accompanied by corresponding depth maps, segmentation masks,
camera trajectories, and human parameters(bounding boxes, 2D
keypoints, SMPL parameters).

In fig. 10a, we present the distribution of camera trajectory lengths,
which range from 4 meters to over 30 meters. In fig. 10b, the human
trajectory length distribution is shown, with performers moving
between 5 meters and over 30 meters. Figure 10c illustrates the scene
mesh area distribution. Indoor scenes are relatively smaller, ranging
from 20 to 90 square meters, while outdoor scenes can be as large as
200 square meters. Finally, in fig. 10d, we show the sequence length
distribution, where most sequences have durations ranging from 30
to 60 seconds.

F.2 Camera Space Demonstrations
We show camera space results in section D.6.
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view1

view2
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view2

view1

view2

Fig. 11. Rendered SMPL and depth images of the captured dataset in camera space.
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