

COMPUTER SCIENCE

Introduction

• Motivation: Existing 3D human mesh reconstruction methods use a constant f or estimate one based on the background context. Such f deviates a lot from distorted images caused by perspective projection.

The distortion is directly caused by the distance and the facing angle to the camera center.

Close-view shots could cause distortion on human bodies, which could be used to calculate the f.

Contribution

A novel camera system for the perspective-distorted 3DHMR task. A new neural model, and a hybrid re-projection loss.

A new and the first synthetic dataset, PDHuman, for perspective-distorted 3D human pose estimation.

Camera System Design

- HMR. f = 5000. Most methods follow this setting.
- **SPEC**. The *f* is estimated by a network pre-trained on other datasets.
- CLIFF. Use the diagonal length as f if no ground truth f.
- Zolly. $f = shT_z/2$. Where T_z is the z-axis distance.

The weak-perspective camera parameters (s, t_x, t_y) , which represent 2D orthographic transformation, could be used to approximate the projection:

$$\begin{bmatrix} f(x+T_x)/T_z\\ f(y+T_y)/T_z \end{bmatrix} = \begin{bmatrix} s(x+t_x)\\ s(y+t_y) \end{bmatrix}, s \times T_z = f, T_x = t_x, T_y = t_y.$$
(1)

In previous methods, they either use a constant or estimated f, and calculate distance by $T_z = f/s$. On contrary, we estimate T_z based on human body distortion clues and calculate f by $f = s \times T_z$. (NDC space)

https://wenjiawang0312.github.io/projects/zolly/

Zolly: Zoom Focal Length Correctly for **Perspective-Distorted Human Mesh Reconstruction**

Wenjia Wang^{1,2} Yongtao Ge³ Haiyi Mei⁴ Zhongang Cai⁴ Qingping Sun⁴ Yanjun Wang⁴ Chunhua Shen⁵ Lei Yang^{2,4} Taku Komura¹

¹The University of Hong Kong

²Shanghai Al Laboratory

Proposed Pipeline

- **Translation Estimation Module.** We use a Transformer to regress the z-axis distance from the warped I_{IUV} image and use sigmoid then $\times 10$ to restrict T_z less than 10m.
- Mesh Estimation Module. We adopt an MLP structure to predict the coordinates of a coarse mesh of the body, then up-sample the mesh using two fully connected layers.
- **Loss Functions.** The total loss function is the summation of mesh loss, translation loss, and hybrid re-projection loss.

 $\mathcal{L}_{total} = \mathcal{L}_{Mesh} + \mathcal{L}_{Transl} + \mathcal{L}_{2D}^{W} + \mathcal{L}_{2D}^{P}$ (2)

where the \mathcal{L}_{2D^W} is the weak-perspective and \mathcal{L}_{2D^P} is the perspective projection.

New Virtual Dataset: PDHuman

We propose the first dataset which aims for perspective-distorted 3D human pose estimation.

- Amount: 126, 198 images in training and 27, 448 images in testing split.
- Annotations: Camera intrinsic matrix, 2D/3D keypoints, SMPL parameters θ , β , and translation.
- **Camera**: Use the dolly-zoom effect to generate random camera intrinsic matrices.
- **Rendering**: Use human models from RenderPeople and body pose sequences from Mixamo, with HDRi images as backgrounds. Use Blender to render the RGB images.

³The University of Adelaide

⁴SenseTime Research

⁵The Zhejiang University

	Method		Backhone		3DPW					Human3.6M			
			Dackb	Unc	PA-JF	Е	MPJPE	-	PVE	PA-	JPE	MPJF	РΕ
	ΗM	1R	Res50		72.6	,)	116.5		-	56	.8	88.0)
	SPEC		Res50		52.7	7	96.4		-				
	CLIFF		HR48		43.0)	69.0	{	81.2	32	2.7	47.2	1
·	Zolly		HR48		39.8		65.0 70		76.3	32	2.3 49.4		1
Mot	thod	Rac	khone		PDHuman (p5)					SPEC-MTP (p3)			
	LIIUU	Dac	KDUIC -	PA-J	JPE PV			mloU	PA	A-JPE	PVI	_	mlol
H	MR	1R Res5C		62	.5	106.	7	21.7	_	73.9	145	.6	16.0
		_			•			1 Q 1		- / -			

HMR	Re
SPEC	Re
CLIFF	Н
Zolly	Н

Qualitative results of SOTA methods. Row 1: PDHuman test. Row 2, 3, 4: web images. Row 4: SPEC-MTP. Row 6: 3DPW. The number under each image represents predicted/groundtruth f, FoV angle, and T_z . The focal lengths here are all transformed to pixels in full image.

HMR

CLIFF

International Conference on Computer Vision (ICCV) 2023, Paris

Experiments

Results on ordinary datasets and distorted datasets.

Quality Results

26.5

67.4

126.7

30.4

82.0